117 research outputs found

    T-URF13 Protein from Mitochondria of Texas Male-Sterile Maize (Zea mays L.)

    Get PDF
    The protein T-URF13 (URF13) is specific to mitochondria of maize (Zea mays L.) with Texas (T) male-sterile cytoplasm and has been implicated in causing male sterility and susceptibility to T-cytoplasm-specific fungal diseases. T-URF13 was purified from isolated mitochondria from maize (line B73) with T cytoplasm by gel filtration and a quasi two-dimensional polyacrylamide gel electrophoresis system. Antibodies to the purified and denatured protein were produced in rabbits. Anti-T-URF13 antiserum was used to show that T-URF13 is in the inner membrane of mitochondria and behaves as an integral membrane protein when mitochondria are fractionated with sodium carbonate or Triton X-114. The antiserum and protein A tagged with 20-nanometer-gold particles were used to localize T-URF13 in T mitochondria by electron microscopy of sections of isolated mitochondria from etiolated shoots and sections of roots and of tapetal cells at pre-and post-degeneration stages of microsporogenesis. The microscopic study confirms that T-URF13 is specifically localized in the mitochondrial membranes of all of the T mitochondria tested, notably those in the tapetum from the meiocyte stage to the late-microspore stage. No change in the amount of labeled T-URF13 protein in the mitochondria of aging tapetal cells was detected

    Extreme conditions in the molecular gas of lensed star-forming galaxies at z~3

    Get PDF
    Atomic Carbon can be an efficient tracer of the molecular gas mass, and when combined to the detection of high-J and low-J CO lines it yields also a sensitive probe of the power sources in the molecular gas of high redshift galaxies. The recently installed SEPIA5 receiver at the focus of the APEX telescope has opened up a new window at frequencies 159 - 211 GHz allowing the exploration of the Atomic Carbon in high-z galaxies, at previously inaccessible frequencies from the ground. We have targeted three gravitationally lensed galaxies at redshift of about 3 and conducted a comparative study of the observed high-J CO/CI ~ratios with well-studied nearby galaxies. Atomic Carbon (CI(2-1)) was detected in one of the three targets and marginally in a second, while in all three targets the J=76J=7\to6 CO line is detected. The CO(7-6)/CI(2-1), CO(7-6)/CO(1-0) line ratios and the CO(7-6)/(far-IR continuum) luminosity ratio are compared to those of nearby objects. A large excitation status in the ISM of these high-z objects is seen, unless differential lensing unevenly boosts the CO line fluxes from the warm and dense gas more than the CO(1-0), CI(2-1), tracing a more widely distributed cold gas phase. We provide estimates of total molecular gas masses derived from the atomic Carbon and the Carbon monoxide CO(1-0), which within the uncertainties turn out to be equal.Comment: A&A, in pres

    A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.

    Get PDF
    Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature

    Water Vapor in nearby Infrared Galaxies as Probed by Herschel

    Get PDF
    We report the first systematic study of the submillimeter water vapor rotational emission lines in infrared (IR) galaxies based on the Fourier Transform Spectrometer (FTS) data of Herschel SPIRE. Among the 176 galaxies with publicly available FTS data, 45 have at least one H_(2)O emission line detected. The H_(2)O line luminosities range from ~1 × 10^5 L_☉ to ~5 × 10^7 L_☉ while the total IR luminosities (L_IR) have a similar spread (~1-300 × 10^10 L_☉). In addition, emission lines of H_(2)O^+ and H^(18)_(2)O are also detected. H_(2)O is found, for most galaxies, to be the strongest molecular emitter after CO in FTS spectra. The luminosity of the five most important H_(2)O lines is near-linearly correlated with L_IR, regardless of whether or not strong active galactic nucleus signature is present. However, the luminosity of H_(2)O(2_11-2_02) and H_(2)O(2_20-2_11) appears to increase slightly faster than linear with L_IR. Although the slope turns out to be slightly steeper when z ~ 2-4 ULIRGs are included, the correlation is still closely linear. We find that L_H_(2)O/L_IR decreases with increasing f_25/f_60, but see no dependence on f_60/f_100, possibly indicating that very warm dust contributes little to the excitation of the submillimeter H_(2)O lines. The average spectral line energy distribution (SLED) of the entire sample is consistent with individual SLEDs and the IR pumping plus collisional excitation model, showing that the strongest lines are H_(2)O(2_02-1_11) and H_(2)O(3_21-3_12)

    Characterization of viral RNA splicing using whole-transcriptome datasets from host species

    Get PDF
    RNA alternative splicing (AS) is an important post-transcriptional mechanism enabling single genes to produce multiple proteins. It has been well demonstrated that viruses deploy host AS machinery for viral protein productions. However, knowledge on viral AS is limited to a few disease-causing viruses in model species. Here we report a novel approach to characterizing viral AS using whole transcriptome dataset from host species. Two insect transcriptomes (Acheta domesticus and Planococcus citri) generated in the 1,000 Insect Transcriptome Evolution (1KITE) project were used as a proof of concept using the new pipeline. Two closely related densoviruses (Acheta domesticus densovirus, AdDNV, and Planococcus citri densovirus, PcDNV, Ambidensovirus, Densovirinae, Parvoviridae) were detected and analyzed for AS patterns. The results suggested that although the two viruses shared major AS features, dramatic AS divergences were observed. Detailed analysis of the splicing junctions showed clusters of AS events occurred in two regions of the virus genome, demonstrating that transcriptome analysis could gain valuable insights into viral splicing. When applied to large-scale transcriptomics projects with diverse taxonomic sampling, our new method is expected to rapidly expand our knowledge on RNA splicing mechanisms for a wide range of viruses

    Accelerating Magnetic Resonance Parametric Mapping Using Simultaneously Spatial Patch-based and Parametric Group-based Low-rank Tensors (SMART)

    Full text link
    Quantitative magnetic resonance (MR) parametric mapping is a promising approach for characterizing intrinsic tissue-dependent information. However, long scan time significantly hinders its widespread applications. Recently, low-rank tensor has been employed and demonstrated good performance in accelerating MR parametricmapping. In this study, we propose a novel method that uses spatial patch-based and parametric group-based low rank tensors simultaneously (SMART) to reconstruct images from highly undersampled k-space data. The spatial patch-based low-rank tensor exploits the high local and nonlocal redundancies and similarities between the contrast images in parametric mapping. The parametric group based low-rank tensor, which integrates similar exponential behavior of the image signals, is jointly used to enforce the multidimensional low-rankness in the reconstruction process. In vivo brain datasets were used to demonstrate the validity of the proposed method. Experimental results have demonstrated that the proposed method achieves 11.7-fold and 13.21-fold accelerations in two-dimensional and three-dimensional acquisitions, respectively, with more accurate reconstructed images and maps than several state-of-the-art methods. Prospective reconstruction results further demonstrate the capability of the SMART method in accelerating MR quantitative imaging.Comment: 15 pages, 12 figure

    A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice

    Full text link
    The molecular mechanisms underlying photoperiod or temperature control of flowering time have been recently elucidated, but how plants regulate flowering time in response to other external factors, such as water availability, remains poorly understood. Using a large-scale Hybrid Transcription Factor approach, we identified a bZIP transcriptional factor, O. sativa ABA responsive element binding factor 1 (OsABF1), which acts as a suppressor of floral transition in a photoperiod-independent manner. Simultaneous knockdown of both OsABF1 and its closest homologous gene, OsbZIP40, in rice (Oryza sativa) by RNA interference results in a significantly earlier flowering phenotype. Molecular and genetic analyses demonstrate that a drought regime enhances expression of the OsABF1 gene, which indirectly suppresses expression of the Early heading date 1 (Ehd1) gene that encodes a key activator of rice flowering. Furthermore, we identified a drought-inducible gene named OsWRKY104 that is under the direct regulation of OsABF1. Overexpression of OsWRKY104 can suppress Ehd1 expression and confers a later flowering phenotype in rice. Together, these findings reveal a novel pathway by which rice modulates heading date in response to the change of ambient water availability
    corecore