306 research outputs found

    Subtyping intractable functional constipation in children using clinical and laboratory data in a classification model

    Get PDF
    BackgroundChildren with intractable functional constipation (IFC) who are refractory to traditional pharmacological intervention develop severe symptoms that can persist even in adulthood, resulting in a substantial deterioration in their quality of life. In order to better manage IFC patients, efficient subtyping of IFC into its three subtypes, normal transit constipation (NTC), outlet obstruction constipation (OOC), and slow transit constipation (STC), at early stages is crucial. With advancements in technology, machine learning can classify IFC early through the use of validated questionnaires and the different serum concentrations of gastrointestinal motility-related hormones.MethodA hundred and one children with IFC and 50 controls were enrolled in this study. Three supervised machine-learning methods, support vector machine, random forest, and light gradient boosting machine (LGBM), were used to classify children with IFC into the three subtypes based on their symptom severity, self-efficacy, and quality of life which were quantified using certified questionnaires and their serum concentrations of the gastrointestinal hormones evaluated with enzyme-linked immunosorbent assay. The accuracy of machine learning subtyping was evaluated with respect to radiopaque markers.ResultsOf 101 IFC patients, 37 had NTC, 49 had OOC, and 15 had STC. The variables significant for IFC subtype classification, according to SelectKBest, were stool frequency, the satisfaction domain of the Patient Assessment of Constipation Quality of Life questionnaire (PAC-QOL), the emotional self-efficacy for Functional Constipation questionnaire (SEFCQ), motilin serum concentration, and vasoactive intestinal peptide serum concentration. Among the three models, the LGBM model demonstrated an accuracy of 83.8%, a precision of 84.5%, a recall of 83.6%, a f1-score of 83.4%, and an area under the receiver operating characteristic curve (AUROC) of 0.89 in discriminating IFC subtypes.ConclusionUsing clinical characteristics measured by certified questionnaires and serum concentrations of the gastrointestinal hormones, machine learning can efficiently classify pediatric IFC into its three subtypes. Of the three models tested, the LGBM model is the most accurate model for the classification of IFC, with an accuracy of 83.8%, demonstrating that machine learning is an efficient tool for the management of IFC in children

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    An Efficient CNN Inference Accelerator Based on Intra- and Inter-Channel Feature Map Compression

    No full text
    Deep convolutional neural networks (CNNs) generate intensive inter-layer data during inference, which results in substantial on-chip memory size and off-chip bandwidth. To solve the memory constraint, this paper proposes an accelerator adopted with a compression technique that can reduce the inter-layer data by removing both intra- and inter-channel redundant information. Principal component analysis (PCA) is utilized in the compression process to concentrate inter-channel information. The spatial differences, truncation, and reconfigurable bit-width coding are implemented inside every feature map to eliminate the intra-channel data redundancy. Moreover, a particular data arrangement is introduced to enhance data continuity to optimize PCA analysis and improve compression performance. A CNN accelerator with the proposed compression technique is designed to support the on-the-fly compression process by pipelining the reconstruction, CNN computation, and compression operation. The prototype accelerator is implemented using 28-nm CMOS technology. It achieves 819.2GOPS peak throughput and 3.75TOPS/W energy efficiency with 218.5mW. Experiments show that the proposed compression technique achieves a compression ratio of 21.5%~43.0% (8-bit mode) and 9.8%~19.3% (16-bit mode) on state-of-the-art CNNs with a negligible accuracy loss. </p

    Measurement of prompt D+D^+ and Ds+D^+_{s} production in pPbp\mathrm{Pb} collisions at sNN=5.02 \sqrt {s_{\mathrm{NN}}}=5.02\,TeV

    No full text
    International audienceThe production of prompt D+D^+ and Ds+D^+_{s} mesons is studied in proton-lead collisions at a centre-of-mass energy of sNN=5.02 \sqrt {s_{\mathrm{NN}}}=5.02\,TeV. The data sample corresponding to an integrated luminosity of (1.58±0.02)nb−1(1.58\pm0.02)\mathrm{nb}^{-1} is collected by the LHCb experiment at the LHC. The differential production cross-sections are measured using D+D^+ and Ds+D^+_{s} candidates with transverse momentum in the range of 0<pT<14 GeV/c0<p_{\mathrm{T}} <14\,\mathrm{GeV}/c and rapidities in the ranges of 1.5<y∗<4.01.5<y^*<4.0 and −5.0<y∗<−2.5-5.0<y^*<-2.5 in the nucleon-nucleon centre-of-mass system. For both particles, the nuclear modification factor and the forward-backward production ratio are determined. These results are compared with theoretical models that include initial-state nuclear effects. In addition, measurements of the cross-section ratios between D+D^+, Ds+D^+_{s} and D0D^0 mesons are presented, providing a baseline for studying the charm hadronization in lead-lead collisions at LHC energies

    Helium identification with LHCb

    No full text
    International audienceThe identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pppp collision data at s=13 TeV\sqrt{s}=13\,{\rm TeV} recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb−15.5\,{\rm fb}^{-1}. A total of around 10510^5 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50%50\% with a corresponding background rejection rate of up to O(1012)\mathcal O(10^{12}). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei
    • 

    corecore