177 research outputs found

    Light induced non-volatile switching of superconductivity in single layer FeSe on SrTiO3 substrate

    Get PDF
    The capability of controlling superconductivity by light is highly desirable for active quantum device applications. Since superconductors rarely exhibit strong photoresponses, and optically sensitive materials are often not superconducting, efficient coupling between these two characters can be very challenging in a single material. Here we show that, in FeSe/SrTiO3 heterostructures, the superconducting transition temperature in FeSe monolayer can be effectively raised by the interband photoexcitations in the SrTiO3substrate. Attributed to a light induced metastable polar distortion uniquely enabled by the FeSe/SrTiO3 interface, this effect only requires a less than 50 µW cm−2 continuous-wave light field. The fast optical generation of superconducting zero resistance state is non-volatile but can be rapidly reversed by applying voltage pulses to the back of SrTiO3substrate. The capability of switching FeSe repeatedly and reliably between normal and superconducting states demonstrate the great potential of making energy-efficient quantum optoelectronics at designed correlated interfaces

    Flow field calculation and dynamic characteristic analysis of spherical hybrid gas bearings based on passive grid

    Get PDF
    In order to research the spherical spiral groove hybrid gas bearings, the Realizable k − ε turbulence model of gas film was established based on FLUENT. The simulation calculation method of 6-degrees of freedom passive grid was used, which can simulate the lubrication characteristics of the gas film transient flow field accurately. And the gas film pressure distribution and dynamic characteristic coefficients are numerically calculated. The dynamic and static pressure coupling effects of the gas flow field were analyzed, and the axis motion trajectory was simulated. The effect of rotation speed, gas supply pressure and tangential angle on the dynamic characteristic coefficients during bearing operation was analyzed. And the stability of the gas bearing was studied. The conclusion from the analysis shows that different rotation speed and gas supply pressure will change the pressure distribution of the gas bearing during the operation. The dynamic characteristics of the gas film can be changed by reasonably optimizing the operation parameters, which can change the whirl characteristics of the gas film and improve the stability. Through calculation and analysis, the tangential angle is selected between 55° and 60°, to ensure that the gas film has a high stiffness, while it also can obtain the larger damping. The simulation results and the experimental results are compared and analyzed to verify the correctness and effectiveness of the simulation method. At the same time, the research of this paper provided a theoretical basis for optimizing the bearing structure and operating parameters, improving the dynamic characteristics of gas bearings and improving the operation stability

    Stamp stress analysis with low temperature nanoimprint lithography

    No full text
    High temperature nanoimprint lithography has the drawback of long process cycle, demoulding difficulty, polymer degradation, thermal stress. Low temperature nanoimprint lithography (LTNIL) can avoid these problems. LTNIL is also ideal for manufacturing biological compatibility samples since the samples do not sustain high temperature. However, LTNIL need to optimize the press parameters in order to fully transfer patterns. Finite Element Method (FEM) is an excellent approach to examine the filling process. The stamp stress was simulated from four points of view, imprint pressure, imprint temperature, stamp pattern and stamp material. It was found that the stress in the stamp corners is especially bigger than other areas, the stress increases with the stamps aspect ratio increases, and stress distribution is more uniform for dense pattern stamp

    Study on dynamic characteristics of gas films of spherical spiral groove hybrid gas bearings

    Get PDF
    According to the gas film force variation law, when the bearing axis is slightly displaced from the static equilibrium position, displacement and velocity disturbance relation expressions for the gas film force increment are constructed. Moreover, combined with the bearing rotor system motion equation, calculation model equations for the gas film stiffness and damping coefficients are established. The axial and radial vibration and velocity of the gas bearings during operation are collected. The instantaneous stiffness and damping coefficients of the gas film are calculated by the rolling iteration algorithm using MATLAB. The dynamic changes in the gas film stiffness and damping under different motion states are analyzed, and the mechanism of the gas film vortex and oscillation is studied. The results demonstrate the following: (1) When the gas bearing is running in the linear steady state in cycle 1, the dynamic pressure effect is enhanced and the stability is improved by increasing the eccentricity; when the gas supply pressure is increased, the static pressure effect is enhanced and the gas film vortex is reduced, but the oscillation is strengthened. (2) With the increase in rotational speed, the gas film vortex force gradually exceeds the gas film damping force, and the stability gradually worsens, causing a fluctuation in the gas film stiffness and damping, following which singularity occurs and a half-speed vortex is formed. Meanwhile, the gas film oscillation is intensified, and the rotor enters the nonlinear stable cycle 2 state operation. (3) As the fluctuation of the film force increases, the instantaneous stiffness and damping oscillation of the film intensifies, most of the stiffness and damping coefficients exhibit distortion, and the rotor operation will enter a chaotic or unstable state. Therefore, the gas bearing stiffness and damping variation characteristics can be used to study and predict the gas bearing operating state. Finally, measures for reducing the vortex and oscillation of the gas film and improving the stability of the gas bearing operation are proposed

    Growth of Diamond Thin Film and Creation of NV Centers

    Get PDF
    Nitrogen-vacancy (NV) center is one type of special defects in diamonds. NV center not only can be used as sensors for temperature, stress detection, magnetic field, etc., but also has potential applications for quantum computing due to its unique physical properties. Therefore, the growth of diamond and creation of NV centers are significant for the future technologies. In this chapter, some methods for growing diamond thin film are introduced first, including traditional high-pressure-high-temperature (HPHT) and chemical vapor deposition (CVD) methods. The second part will focus on the current commonly used approaches to create NV centers. Inter-growth and post-growth processes are mainly utilized for the creation of NV centers during and after the growth of thin film, respectively

    Dynamic Stability Prediction of Spherical Spiral Groove Hybrid Gas Bearings Rotor System

    Get PDF
    Taking the hemisphere spiral groove hybrid gas bearings (HSGHGB) as the research object, the nonlinear dynamic lubrication analysis mathematical model of spherical hybrid gas bearings is established with the axis instantaneous position and instantaneous displacement speed as the parameters. The perturbation pressure control equation is solved by means of the finite difference method in generalized coordinate system. The calculation program is prepared based on VCþþ6.0, and the transient perturbation pressure distribution of three-dimensional (3D) gas film, nonlinear gas film force, and dynamic stiffness and damping coefficients are numerically calculated. The influences of different speeds, eccentricity ratios, and gas supply pressures on the dynamic characteristic coefficients of gas film are studied. The results show that the influence of bearing's supply pressure, speed, and eccentricity on the dynamic characteristics of gas film is significant. The dynamic equations of rotor-bearing system containing the gas film dynamic stiffness and the damping coefficients are established, and the stability of the gas film is predicted based on the Routh-Hurwitz stability criterion. The research provides the theoretical foundation for actively controlling the bearing running stiffness and damping and stemming the instability of gas film

    Experimental observation of Dirac-like surface states and topological phase transition in Pb1x_{1-x}Snx_xTe(111) films

    Full text link
    The surface of a topological crystalline insulator (TCI) carries an even number of Dirac cones protected by crystalline symmetry. We epitaxially grew high quality Pb1x_{1-x}Snx_xTe(111) films and investigated the TCI phase by in-situ angle-resolved photoemission spectroscopy. Pb1x_{1-x}Snx_xTe(111) films undergo a topological phase transition from trivial insulator to TCI via increasing the Sn/Pb ratio, accompanied by a crossover from n-type to p-type doping. In addition, a hybridization gap is opened in the surface states when the thickness of film is reduced to the two-dimensional limit. The work demonstrates an approach to manipulating the topological properties of TCI, which is of importance for future fundamental research and applications based on TCI

    Protopanaxadiol and Protopanaxatriol-Type Saponins Ameliorate Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus in High-Fat Diet/Streptozocin-Induced Mice

    Get PDF
    Ginsenoside is a major active component of ginseng, which exhibits various pharmacological properties such as hepatoprotection, tumor suppression and diabetes resistance. In this study, the anti-diabetic effects of protopanaxadiol (PPD) and protopanaxatriol (PPT)-type saponins were explored and compared in high-fat diet/streptozocin-induced type 2 diabetes mellitus (T2DM) mice. Our results showed that low or high dose (50 mg/kg bodyweight or 150 mg/kg bodyweight) PPD and PPT significantly reduced fasting blood glucose, improved glucose tolerance and insulin resistance in T2DM mice. PPD and PPT also regulated serum lipid-related markers such as reduced total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol in T2DM mice. In addition, PPD and PPT dramatically ameliorated the inflammatory responses by suppressing the secretion of pro-inflammatory cytokines like tumor necrosis factor-alpha and interleukin-6 in serum level and gene expression in liver level, and improved the antioxidant capacity by increasing the superoxide dismutase and decreasing malondialdehyde levels in the serum of T2DM mice. Moreover, the anti-diabetic effect of PPD and PPT appeared to be partially mediated by the suppression of hepatic metabolism genes expression such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase, as well as facilitating lipid metabolism genes expression such as microsomal TG transfer protein in the liver tissues of T2DM mice. Taken together, our results indicated that PPD and PPT might potentially act as natural anti-diabetic compounds to be used for preventing and treating the T2DM and its complications in the future

    Cognition Impairment Prior to Errors of Working Memory Based on Event-Related Potential

    Get PDF
    Cognitive impairment contributes to errors in different tasks. Poor attention and poor cognitive control are the two neural mechanisms for performance errors. A few studies have been conducted on the error mechanism of working memory. It is unclear whether the changes in memory updating, attention, and cognitive control can cause errors and, if so, whether they can be probed at the same time in one single task. Therefore, this study analyzed event-related potentials in a two-back working memory task. A total of 40 male participants finished the task. The differences between the error and the correct trials in amplitudes and latencies of N1, P2, N2, and P3 were analyzed. The P2 and P3 amplitudes decreased significantly in the error trials, while the N2 amplitude increased. The results showed that impaired attention, poor memory updating, and impaired cognitive control were consistently associated with the error in working memory. Furthermore, the results suggested that monitoring the neurophysiological characteristics associated with attention and cognitive control was important for studying the error mechanism and error prediction. The results also suggested that the P3 and N2 amplitudes could be used as indexes for error foreshadowing
    corecore