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Abstract: In order to research the spherical spiral groove hybrid gas bearings, the Realizable k-ε 

turbulence model of gas film was established based on FLUENT. The simulation calculation 

method of 6-degrees of freedom (DOF) passive grid was used, which can simulate the 

lubrication characteristics of the gas film transient flow field accurately. And the gas film 

pressure distribution and dynamic characteristic coefficients are numerically calculated. The 

dynamic and static pressure coupling effects of the gas flow field was analyzed and the axis 

motion trajectory was simulated. The effect of rotation speed, gas supply pressure and tangential 

angle on the dynamic characteristic coefficients during bearing operation were analyzed. And 

the stability of the gas bearing was studied. The conclusion from the analysis shows that 

different rotation speed and gas supply pressure will change the pressure distribution of the gas 

bearing during the operation. The dynamic characteristics of the gas film can be changed by 

reasonably optimizing the operation parameters, which can change the whirl characteristics of 

the gas film and improve the stability. Through calculation and analysis, the tangential angle is 

selected between 55° and 60°, both to ensure that the gas film has a high stiffness, while also 

can obtain the larger damping. The simulation results and the experimental results are compared 

and analyzed to verify the correctness and effectiveness of the simulation method. At the same 

time, the research of this paper provided a theoretical basis for optimizing the bearing structure 

and operating parameters, improving the dynamic characteristics of gas bearings and improving 

the operation stability. 

Keywords: Spherical hybrid gas bearings; 6-degrees of freedom passive grid; Gas film pressure 

distribution, Dynamic and static pressure coupling effects; Dynamic characteristic coefficients; 
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1. Introduction 

Gas bearing is a new type of sliding bearing with viscous gas as the main lubricating 

medium, which have obvious advantages in the fields of high speed, high precision, low 

friction and extreme working conditions1-3. The gas film with a certain bearing capacity 

was formed between the rotor and the stator when the bearing rotates at high speed, and 

the transient flow characteristics are very complex. Hybrid gas bearings has the non-

linear coupling effect of static pressure and dynamic pressure. The phenomenon of 

whirl instability and gas film oscillation occurs at high speed, which lead to the failure 

of bearings and restrict the wide application of gas bearings4,5. The dynamic 

characteristics of the gas film reflect the variation law of the gas film force when the 

journal deviates from the static equilibrium position and the displacement motion in the 

vicinity, which has very complex non-linear and stochastic characteristics. The random 

variation of the gas film dynamic characteristics will cause the change of the gas film 

motion state. It is expressed as a random change of the stability of the gas film, and 

directly affects the motion state of the bearing rotor6-8. Therefore, the calculation and 

analysis of dynamic characteristics of bearing gas film is the key to study the stability of 

gas bearing9. 

At present most scholars have studied the stability of hybrid gas bearings 

basically using experimental and theoretical10-12. The theoretical calculation is basically 

based on the Reynolds lubrication equation. The dynamic characteristic coefficients 

were obtained by solving simultaneously the linear equations, and the stability of the 

bearing was analyzed. Because the Reynolds equation can not accurately reflect the 

nonlinear coupling relation between the circumferential inertial effect of high speed 

airflow, the circumferential dynamic pressure effect of the journal and the static 

pressure diffusion effect, and the effect on the three-dimensional flow field 

characteristics. Therefore, the calculation of the stiffness and damping of the gas film 

deviates from the true value and the error is large. The real motion state of the bearing 

can not be accurately analyzed13,14. However, testing the dynamic characteristic 

coefficients of the bearing ask for the rigorous experimental conditions. In the test 

process, various external factors inevitably interfere with the test, which makes the test 

result have certain error. 

In this paper, the Realizable k-ε turbulence model of the spherical spiral groove 

hybrid gas bearings gas film was established based on FLUENT. The pressure 
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distribution on the grid point of the gas film was numerically calculated by using 6 DOF 

passive grid. Simulating the complex gas flow in the transient flow field of the gas film. 

The dynamic and static pressure coupling effect of the gas flow field was analyzed. The 

dynamic trajectory of axis was simulated and the dynamic characteristic coefficients 

were calculated. The influence law of rotation speed, gas supply pressure and tangential 

angle on the dynamic characteristic coefficients was analyzed during bearing 

movement. The mechanical mechanism of gas bearing stability was studied. The 

validity and feasibility of theoretical calculation and simulation analysis were verified 

through experimental analysis. The research provides the theoretical foundation for 

optimizing the structure and operation parameters of hybrid gas bearings, improving 

dynamic characteristics and improving operation stability. 

2. Calculation model of gas bearing 

2.1 Three - dimensional model of bearing gas film 

This article takes the hybrid gas bearings as the research object, and the bearing consists 

of two portions of the rotor and the stator. There is a certain number of air holes on the 

stator, the rotor is provided with spiral grooves, the spiral groove by the groove area and 

the platform area, as shown in figure 1. On the one hand after the introduction of 

external high pressure gas by restrictor to bearing clearance, static gas film is formed 

and generating in static bearing capacity. On the other hand the wedging effect between 

rotor and stator is produced when the bearing rotates at high speed, dynamic pressure 

gas film is formed and generating in dynamic bearing capacity. The transient flow field 

characteristics of the gas film reflect the dynamic bearing performance and stability of 

the bearing during the operation. 
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Figure 1. Spherical spiral groove hybrid gas bearings profile diagram 

In Figure 1,   is the helix angle, 
1  is the diameter of the bearing, 

2  is the 

diameter of the gas supply hole,   is the rotation speed, 
rb  is the table width, gb  is the 

groove width, gh  is the groove area clearance, 
0h  is the average gas film thickness, 

groove depth ratio 0 0( ) /gh h h h  , groove width ratio / ( )g r gb b b b  ,   for the gas 

supply hole angle, 
1 2 3  、 、  for the wrap angle, 

1 2 、  is the axial supply hole angle, 

3  is the tangential angle with reversely tangential gas supply holes. 

Using the space spherical coordinate system, the model structure parameters 

=70 , R = 7.5mm. Based on the spherical conformal space coordinate system, the 

spherical helix equations (1) were established in Pro / E, and the spherical helix was 

obtained, as shown in figure 2. 
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Figure 2. Spherical isometric space relation diagram 

The three-dimensional model of the gas film of the bearing was established by 

using the space spherical coordinate system, the helix and the structure parameters of 

the bearing. The three-dimensional gas film model of the hybrid gas bearings was 

established by using Pro/E. Change the default precision in Pro / E to 1µm to meet the 

high accuracy requirements of the model. 

Model structure parameters: 
1 15mm  , 

2 0.2mm  , 70  , 
0 20h m , 

1 2 326 , 32 , 85     , dimensionless eccentricity 0.3  , groove width ratio 0.4b  , 

groove depth ratio 3.6h  . The three-dimensional model of the gas film is shown in 

figure 3. 

 

Figure 3. Spherical spiral groove hybrid gas bearings gas film three-dimensional model 

2.2 Governing equation 

In this paper, the lubrication flow field in the gas bearing can be described by the mass 

conservation equation and the momentum conservation equation. 

(1) Mass conservation equation 

 ( ) 0div u
t





 


 (2) 

Where   is the air density; t  is the flow time; ( )div u  is the divergence of the 

velocity vector u .  

(2) The momentum conservation equation 
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 (3) 

Where   is the dynamic viscosity; 
u v wS S S、 、 is momentum conservation equation 

of the generalized source term; u v w、 、 is the velocity vector on the x, y, z direction of 

the velocity components. 

When the transient flow field of the bearing gas film is simulated, the 6DOF 

solver uses the force and moments of the rotor to compute the translational and angular 

motion of the center of gravity of the rotor, thus obtaining the motion trajectory of the 

bearing rotor. 

The governing equation for the translational motion of the center of gravity is 

solved for in the inertial coordinate system: 

 
1

G Gv f
m

   (4) 

Where Gv  is the translational motion of the center of gravity, m is the mass, and 

Gf  is the force vector due to gravity. 

The angular motion of the object B  is more easily computed using body 

coordinates: 

 
1( )B B B BL M L       (5) 

Where L is the inertia tensor, BM  is the moment vector of the body, and  
B is the 

rigid body angular velocity vector. 

After the angular and the translational accelerations are computed from Equation 

(4) and Equation (5), the rates are derived by numerical integration. The angular and 

translational velocities are used in the dynamic mesh calculations to update the rotor 

position. 
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2.3 Finite element mesh model 

The gas bearing is meshed by FLUENT pretreatment software ICEM CFD. Due to the 

large difference in size of the hybrid gas bearings in the three directions of the space, 

and the gas film thickness is generally within a few tens of microns. It is more 

reasonable to use structured grid partition method, which can improve the precision of 

numerical calculation and save calculation time, and reduce the probability of the 

negative volume of the grid. After comparing and analyzing the calculation results of 

the calculation model under different grid densities. It is found that the different grid 

numbers in the gas supply hole and the spiral groove lead to the difference of the 

calculation results. The grid was properly encrypted in the position of the gas supply 

hole and the spiral groove, O-type grids were used in the gas supply holes. The grid of 

the gas film is shown in figure 4. 

 

Figure 4. Finite element calculation model 

3. Numerical calculation of flow field 

3.1 FLUENT calculation model and model hypothesis 

3.1.1 The flow Realizable k-ε model 

In the dynamic calculation of the model, FLUENT mainly has active and passive grid 

two ways to control the model of the grid deformation. The active dynamic grid is 

usually used in the boundary motion law and the motion state is known. The boundary 

motion trajectory program is called to simulate the boundary motion, and the transient 

flow field characteristics of the model are calculated. The passive dynamic grid is 

usually used for the boundary motion and the motion state is unknown. It is often 
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necessary to obtain the boundary motion by calculating the force or torque on the 

boundary. The hybrid gas bearings motion state is unknown, it is mainly by the bearing 

structure parameters, rotation speed, gas supply pressure, external load and other 

factors. Therefore, the passive grid is more appropriate to calculate the dynamic 

characteristics of the bearing, and it can also simulate the motion characteristics of the 

bearing gas film more realistically. 

The k-ε model of the turbulence model is a two-equation model, which contains 

the transport equation for the turbulent kinetic energy k and the equation for the 

turbulent dissipation rate ε. The k-ε model is also divided into standard k-ε model, RNG 

k-ε model, and Realizable k-ε model. The Realizable k-ε model is applied to the flow of 

higher mainstream shear rate and larger curvature. It can achieve better calculation 

results for the swirling flow, boundary layer flow with strong pressure gradient and 

complex secondary flow. Hybrid gas bearings with a smaller size, the speed can be up 

to tens of thousands or even hundreds of thousands during the operation. When the 

bearing rotates at high speed, the motion of the gas film will appear as whirl and 

cyclone. This model can well simulate the cyclone phenomenon at the gas supply hole. 

So the Realizable k-ε turbulence model is adopted in this paper. 

3.1.2 Model hypothesis 

The lubrication analysis model of the spherical helical groove hybrid gas bearings 

which reflects the pressure field and velocity field distribution, dynamic bearing 

characteristics and lubrication characteristics of the gas film in the bearing clearance. In 

the calculation of the fluid has the following assumptions: (1) The lubricating medium 

is Newton fluid, and the gas viscosity coefficient is constant; (2) There is no heat 

exchange between the gas and the wall, and the thermal deformation of the bearing and 

journal is not considered during the rotation; (3) In the direction perpendicular to the 

thickness of the gas film, the velocity change is neglected, that is the pressure does not 

change along the gas film thickness; (4) The gas does not have relative sliding on the 

shaft and bearing surfaces; (5) The wall is assumed to be smooth, without considering 

the influence of wall roughness and slip boundary. 

3.1.3 Boundary conditions 

The boundary conditions for flow field calculations are used for three boundary 
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conditions for inlet, outlet and wall. (1)The gas supply hole and large end of the gas 

bearing is the pressure boundary condition, the total inlet pressure is given. (2)The small 

end of the gas bearing is also the pressure boundary condition, and the pressure is set as 

ambient atmospheric pressure according to the actual situation. (3)The remaining 

boundary of the bearing is set as a wall surface, and there is no relative sliding between 

the wall surfaces. The inner wall surface of the gas film is set as a rotating rigid wall, 

and the outer wall surface of the gas film and the wall surface of the gas supply holes 

are set as fixed wall surfaces. 

3.2 Steady-state solution calculation 

After introducing the gas bearing grid into FLUENT, the 3D pressure base implicit 

solver is selected, and the boundary conditions of the flow field calculation are set up. 

PISO algorithm is used in the pressure and velocity coupling, and the algorithm is based 

on SIMPLE algorithm. The difference between the two is that after a given pressure to 

solve the momentum equation and the continuous equation, the PISO algorithm needs to 

correct the pressure and velocity equations twice, so that the pressure and velocity reach 

the second and third order precision of the moment. Due to the influence of the high 

speed rotation of the journal on the flow field, the interpolation discrete format of the 

pressure equation chooses PRESTO. The residual difference of all equations is less than 

0.0001, and the flow rate of the inlet and outlet is monitored during the calculation. And 

the calculation is convergent when the numerical value is basically equal. 

The steady-state calculation is based on the given structure parameters and 

operating parameters. It is assumed that the gas bearing can operate stably under given 

radial and axial eccentric conditions, and through the FLUENT simulates the flow field 

in the gas film thickness. The pressure field and velocity field distribution at each grid 

point were calculated numerically, and the steady gas film pressure distribution and the 

steady state bearing performance are obtained. The steady-state calculation flow chart 

as shown in figure 5: 
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Start

Import the finite element model

Select the calculation model and 

define the boundary conditions

Set solver accuracy

Setting iteration parameters

Solve the calculation

The residual 

convergence standard is 

less than 0.001

Adjusting 

the solver 

parameters

Output pressure 

distribution

NO

YES

Calculation 

completed  

Figure 5. Steady-state simulation calculation flow chart 

3.3 Transient calculation 

The gas bearing is based on the given structure parameters and operating parameters, 

and through the FLUENT simulates the flow field in the gas film thickness. The 

pressure distribution at each grid point of gas film are calculated numerically, and the 

dynamic characteristic coefficients of the bearing are obtained. The dynamic calculation 

flow chart as shown in Figure 6: 
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Import the finite element model
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Define boundary conditions

Select the calculation model

Set grid deformation parameters

Set the initial time and time step
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Adjusting 

the solver 

parameters

Export speed, 

displacement, force

Output stiffness and 
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NO

YES

 

Figure 6. Dynamic simulation calculation flow chart 

First, write a 6 DOF dynamic program. The meaning of 6 DOF is 6 degrees of 

freedom, with three translation motions and three rotational motions. The 6 DOF 

program can limit or release the degree of freedom required for the rotor during 

transient calculations. The quality and moment of inertia of the rotor can be obtained 

during modeling, while the 6 DOF program is programmed according to the UDF 

manual. Because the opposed hemispherical bearing is used in the test, the axial 

translation is cancelled, so the Z-direction translation freedom is limited in the 

simulation calculation. 

In dynamic calculations, select a period of time during the simulation and output 

the force, velocity, and displacement of the gas film at each time step. Since the time 

step is very short, the rotor running state and the film force change are small in the 

process of output data for 5 consecutive times. So the calculation of the change of force, 

velocity and displacement starts from the sixth groups, and then the dynamic stiffness 

damping coefficient of the gas film is calculated by Equation (6). According to the 

above method, the Matlab program is compiled, and the rolling iteration method is used 

to process and calculate the data. Finally, obtain the average value to obtain the 

dynamic stiffness damping coefficient of the bearing. 
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 (6) 

Where yxF F 、  is the variation of bearings gas film force between at two time 

points, xx yyk k、  is the direct stiffness coefficients, xy yxk k、 is the cross stiffness 

coefficients, xx yyb b、  is the direct damping coefficients, xy yxb b、  is the cross damping 

coefficients, x y 、  are displacement variations of bearings in the X and Y directions 

respectively, vx yv 、  are the velocity variations of the bearing in X and Y direction 

respectively. 

4. Pressure distribution and dynamic and static pressure coupling effects 

The gas film pressure distribution of the hybrid gas bearings is mainly influenced by the 

operation parameters and the structure parameters of the bearings. The influence of gas 

supply pressure and rotation speed on the stability of bearings was studied by the 

pressure distribution characteristics of the bearings gas film15-17. 

Pressure nephogram of three dimensional gas film pressure of hybrid gas 

bearings when gas supply pressure is 0.2MPa and rotation speed is 30000r/min.  

 

Figure 7. Gas film pressure nephogram of bearing 

As can be seen from Figure 7, due to the existence of bearing eccentricity, the 

gas flow has a wedging effect when the bearings is running. And the convergence 

region and the divergence region are formed in the gas film thickness. The gas film 

pressure in the convergence region is gradually increased, the gas film pressure is the 
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largest in the area near the smallest gas film thickness. The gas film pressure in the 

divergence region is decreasing rapidly. The gas film pressure is abrupt change at the 

junction of the groove table of the bearings spiral groove. The gas film pressure at the 

junction of the side of the increased sharply, the other side plummeted. The dynamic 

pressure effect is significantly enhanced when the bearing rotation speed is gradually 

increased. 

 

Figure 8. Gas film circumferential pressure distribution 

Figure 8 shows the pressure distribution of the gas film on the different 

circumference sections of the bearings when the rotation speed is 30000r/min; Figure 8b 

is the distribution of gas film pressure at different rotation speeds of the spiral groove 

section of the bearing when the gas supply pressure is low. It can be seen from the 

figure that the static pressure effect is obviously enhanced near the bearing supply holes 

and the dynamic pressure effect appears near the spiral groove. The pressure of gas film 

increases with the increase of rotation speed, and the dynamic and static pressure 

coupling effects was formed to bear the bearing capacity of gas film. And makes the 

pressure distribution in the circumferential direction more uniform, load distribution 

more reasonable. The dynamic pressure effect is greatly influenced by the rotation 

speed. The higher the speed, the greater the eccentricity, which makes the dynamic 

pressure effect more obvious. In order to obtain larger bearing capacity, gas bearings 

need to increase the spiral groove and other structures, increase eccentricity, reduce the 

average gas film thickness to enhance the dynamic pressure effect. However, the gas 

film force which leads to the gas film whirl is increased, and the typical whirl 

phenomenon is caused. When the whirl is larger, the amplitude increases, which is the 

important reason of rotor instability. Hybrid gas bearings can enhance the static pressure 

effect by increasing the gas supply pressure to improve the bearing performance while 
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maintaining reasonable dynamic pressure effect. While greatly improving the bearing 

capacity, it is also more conducive to better guarantee the stability under large load. 

When the rotation speed is high, the bearing capacity generated by static 

pressure effect of bearings increases slowly with the increase of the gas supply pressure. 

At this time, the dynamic pressure effect increases greatly due to the high rotation 

speed, which makes the static pressure and dynamic pressure coupling effect bearing 

capacity stronger. Therefore, dynamic and static pressure coupling effects can 

complement each other better, which can not only enhance the bearing performance of 

the gas film, but also optimize the dynamic characteristics. It can effectively restrain the 

generation of whirl and oscillation, and improve the stability of high speed operation. 

5. Axis dynamic trajectory simulation 

During the operation of the hybrid gas bearings, the different axis trajectory can reflect 

the motion state and the fault information of the bearing. The stability of the bearing can 

be judged by the convergence and divergence of the bearing axis trajectory18-20. There 

are many factors that affect the axial trajectory of the hybrid gas bearings, such as gas 

supply pressure, rotor speed, bearing structure parameters, external disturbances and so 

on. In this paper, the influence of rotation speed on the axial trajectory of hybrid gas 

bearings was studied. Through simulation of bearing axis trajectory diagram and 

spectrogram, the influence on gas film stability was analyzed. 

 

Figure 9. 10000r/min axis trajectory diagram and spectrogram 
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Figure 10. 17500r/min axis trajectory diagram and spectrogram 

 

Figure 11. 20000r/min axis trajectory diagram and spectrogram 

 

Figure 12. 30000r/min axis trajectory diagram and spectrogram 
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Figure 13. 40000r/min axis trajectory diagram and spectrogram 

 

Figure 14. 50000r/min axis trajectory diagram and spectrogram 
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Figure 15. Variations of the amplitude in x and y direction with rotation speed 

Figure 15 shows the stability characteristics of the bearing was analyzed on the 

variations of the amplitude at x and y direction with respect to rotational speed. From 

Figure 9 to 11, when the bearing rotation speed is 10000r/min, the axis trajectory is the 
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standard ellipse. The motion belongs to the same frequency whirl, which is still linear 

stability. With the rotation speed increases to 20000 r/min, the amplitude increases first 

and then decreases. When rotation speed in the 17500 r/min, the corresponding 

spectrogram shows the maximum value of the working frequency amplitude. And the 

first-order critical speed of the system is appeared, at this time the bearing is still stable. 

As can be seen from Figures 12 to 14, when the rotation speed is gradually increased 

from 20000 r/min to 40000 r/min. The axis trajectory diagram shows that the running 

state changes from quasi-periodic motion to periodic motion, and the amplitude shows 

an increasing trend. And the whirl energy of the bearing increases gradually, and the 

axis trajectory gradually diverges. When the rotation speed reaches 40000 r/min, the 

vibration of the bearing appears the relatively weak half-frequency and double-

frequency. When the rotation speed increases to 50000 r/min, the half-frequency is 

obviously enhanced, and the axis trajectory also has obvious half frequency whirl.  

6. Dynamic calculation and stability analysis 

6.1 Variation of rotation speed on dynamic characteristic coefficients 

When the dynamic pressure gas bearing is running at high speed, the change of the 

operation parameters (rotation speed, gas supply pressure, external load, disturbance 

frequency) will cause the change of the flow field inside the gas film, and the 

characteristics of the gas film will be reconstructed. It will cause the change of the 

eccentricity, the pressure distribution of the gas film, the nonlinear gas film force, the 

bearing performance, the dynamic characteristic and the stability21-22. Figure 16 shows 

the variation law of the stiffness and damping of the bearing with the rotation speed. 
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Figure 16. Variation of rotation speed on stiffness and damping coefficients 

In the case of constant structure parameters and the bearing gas supply pressure 

is 0.2MPa, the rotation speed of the gas bearing increases from 10000r/min to 55000 

r/min. The following conclusions can be drawn: 

(1) It can be seen from the figure 16a that the direct stiffness coefficient xx yyk k、  

increases rapidly, and the cross stiffness coefficient xy yxk k、  decreases gradually. Figure 

16b shows that the direct damping coefficient increases gradually, and reaches the 

maximum when the rotation speed is around 20000 r/min. The cross damping 

coefficient xyb  decreases rapidly, while yxb  decreases slowly. In the vicinity of 20000 

r/min, a system natural first-order critical speed of 17500 r/min appeared, and the 

corresponding spectrogram shows the maximum value of the working frequency 

amplitude. Below this speed, the axis trajectory diagrams shows linear stability period 1 

motion. 

(2) When the rotation speed is increased to 40000 r/min, the direct stiffness 

coefficient xx yyk k、  is unchanged. But the cross stiffness coefficient xy yxk k、  gradually 

increased and the damping coefficient trend is basically unchanged. When the rotation 

speed is increased to 45000 r/min, the spectrogram shows the phenomenon of half 

frequency whirl, and the axis trajectory diagrams shows non-linear stability period 2 

motion. It shows that the increase of cross stiffness coefficient leads to the gas film 

whirl force is greater than the damping, and the gas film whirl occurs. 

 (3) When the rotation speed is between 40000 r/min and 50000 r/min, the 

stiffness and damping changed unregularly. The direct stiffness coefficient xxk  gradual 

from decrease to increase, yyk  from increase to decrease. The direct damping 

coefficient xx yyb b、  from gradually decreased to gradually increased, and the cross 

damping coefficient xyb  decreases significantly. In this process, the period 2 motion and 

the chaotic trajectory appears repeatedly. 

(4) When the rotation speed reaches 55000r/min, the direct stiffness coefficient 

xxk  from increase to decrease, while the yyk  rapidly increases. The cross stiffness 

coefficient yxy xk k、  appear downward trend. The direct damping coefficient xx yyb b、  

changed from increased to rapidly decreased, and the cross damping xy yxb b、  decreased 

to almost zero.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6.2 Variation of gas supply pressure on dynamic characteristic coefficients 

Under the condition of 20000r/min rotation speed, the variation of gas supply pressure 

on stiffness and damping coefficients were simulated by changing the gas supply 

pressure. 

 

Figure 17. Variation of gas supply pressure on stiffness and damping coefficients 

As shown in figure 17, with the increasing of gas supply pressure, the direct 

stiffness coefficients xxk  and yyk  direction are the same and the trend is increasing. At 

the same time, the cross stiffness coefficients xyk  and yxk  gradually increase, but the 

trend is slow. When the gas supply pressure exceeds 0.4MPa, the increasing trend of 

direct stiffness coefficients are slowed down. With the increasing of gas supply 

pressure, the direct damping coefficients xxb  and yyb  direction are the opposite and the 

trend is increasing. The cross damping coefficients ,xy yxb b  direction opposite and 

gradually increases, but the trend is slow. When the gas supply pressure exceeds 

0.4MPa, the cross damping coefficients ,xy yxb b  gradually decrease. 

When the gas supply pressure is 0.1MPa, the bearing operation is close to the 

pure dynamic pressure bearing. When the gas supply pressure exceeds 0.4MPa, the 

bearing operation is close to pure static pressure bearing. The stability of the bearing is 

continuously improved with the increase of gas supply pressure. 

6.3 Variation of tangential angle on dynamic characteristic coefficients 

The change of the structure parameters of the gas bearing directly changes the 

geometrical structure of the gas film, thus changing the lubrication characteristics and 

dynamic characteristics of the gas film during high speed operation. For hybrid gas 
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bearings, the main structure parameters are tangential angle, groove width ratio, groove 

depth ratio, helix angle and slot number. Changing the tangential angle can produce the 

circumfluence effect to reconstruct the dynamic characteristics of the gas film, which 

can change the coupling relationship between the natural frequencies of the system and 

the vortex frequencies of the gas film, and improve the stability of the bearing during 

high speed operation23-24. 

 

Figure 18. Variation of tangential angle on stiffness and damping coefficients 

As shown in Figure 18, with the increase of the tangential angle, the direct 

stiffness coefficients xxk  and yyk  of the bearings increase first and then decrease. When 

the tangential angle exceeds 60°, the direct stiffness coefficient xxk  and yyk  rapidly 

decrease. The cross stiffness coefficients xyk  and yxk  also showed a similar trend, but 

the trend of change was slow. The stiffness coefficient yyk  in the load direction is larger 

than the stiffness coefficient xxk  in the non-load direction. When the tangential angle is 

55°, the stiffness of the bearing is the largest. And the damping coefficient yyb  in the 

load direction is smaller than the damping coefficient xxb  in the non-load direction. 

With the increasing of tangential angle, yyb  and xxb  showed increasing trend, which 

increased obviously in the 50°-60°. 

As shown in figures 19, the rotation speed is the 20000r/min axis trajectory 

diagram, when the tangent angle is 75° and 30°. 
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Figure 19. Axis trajectory diagram 

When the tangential Angle is 75°, bearing stiffness is small, but has a larger 

damping. At this time, the gas film whirl force is smaller than the damping and the 

whirl energy is decreasing, the axis whirl trajectory is convergent. The increase of 

damping maintains the whirl stability. When the tangential angle is 30°, bearing 

stiffness is large, but the damping of the system is very small. Simulation calculations in 

a very short period of time will be error, resulting in the calculation can not proceed, the 

axis trajectory as shown in Figure 19b. At this time, the bearing gas film whirl force is 

greater than the damping, gas film force work to promote the whirl energy continues to 

increase, which leads to the axis trajectory movement divergence. Therefore, the 

tangential angle is selected between the 55°-60°, which can ensure the bearing gas film 

has higher stiffness, but also has a larger damping coefficient, to ensure more stable and 

high-speed operation of the bearings. 

7. Experimental verification 

7.1 Test principles 

This experimental test system includes high pressure gas source I, bearing test machine 

II, signal detection system III, data processing system IV, the overall scheme as shown 

in Figure 20. The equipment 1-6 connected to form a high-pressure gas source I that 

provides the gas supply pressure of 0.8MPa and the gas supply flow rate of 2.4 L/min. 

The high-pressure gas source I provides high-pressure gas to the bearing testing 

machine II, a part of which is used as a supporting gas to supply the gas bearing, and the 

other part is used as a power gas supplying turbine to drive the bearing rotor to rotation. 

-0.002 -0.001 0.000 0.001 0.002 0.003

0.000

0.002

0.004

0.006

0.008

0.010

0.012
D

is
p
la

ce
m

en
t 

Y
/m

m

Displacement X/mm

0.00000 0.00004 0.00008 0.00012

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

D
is

p
la

ce
m

en
t 

Y
/m

m

Displacement X/mm

(a) Tangential angle 75° (b) Tangential angle 30° 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



The signal detection system III measures the gas film force, vibration displacement, 

vibration speed, and rotation speed of the gas bearing in the X, Y, and Z directions. The 

data processing system IV processes and calculates test data to obtain the gas film 

stiffness and damping coefficients. 

 

1-Air compressor; 2-Gas storage tank; 3-High temperature freeze drier; 4-Separator filter; 5-Main 

pipeline filter; 6-Oil removal filter; 7-Turbine valve; 8-Bearing gas supply valve; 9-Bearing rotor; 

10-Gas bearing; 11-Turbine; 12, 13, 14- X, Y, Z axis laser displacement sensor; 15-Speed sensor; 

16-Data acquisition device; 17-Computer 

Figure 20. Overall scheme diagram of test machine 

7.2 Main structure of test machine 

The main structure of bearing test machine is shown in Figure 21. The gas bearing test 

machine is mainly composed of bearing rotor system, driving turbine, bearing seat and 

frame. The hemispherical diameter of the bearing testing machine is 15mm and the gas 

film thickness is 10m. The structure parameters are shown in Table 1. 
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1-Gas bearing; 2-Gas bearing rotor; 3-Frame; 4-Turbine end cover; 5-Turbine; 6-Turbine cover; 7- 

Bearing seat 

Figure 21. Main structure of test machine 

 

1-Laser displacement sensor; 2-Turbine; 3-Frame; 4-Speed sensor; 5-Gas bearing-rotor system; 6-

Gas bearing; 7-Spiral groove; 8-Rotor 

Figure 22. Bearing test machine 

Table 1. The design parameters of hybrid gas bearings 

Structure name Parameter 

Bearing diameter
1 (mm) 15 

Groove depth ratio h  3.6 

Groove width ratio b  0.4 

The number of grooves Ng 6 

Helix angle () 70 

The average gas film thickness h0(m) 20 

Small hole diameter 
2 (mm) 0.2 

Gas supply hole row number 2 

Number of gas supply holes 6 

7.3 Experimental test 

7.3.1 Bearing rotor critical speed experimental test 

The gas supply pressure of the bearing of the gas bearing test bench was adjusted to 

0.2MPa for experimental testing. The turbine gas supply system was started and the 

rotor rotation speed smoothly increased during the period 1 of the linear stability. In the 

initial stage, the rotation speed of the rotor is low, the dynamic pressure effect of the gas 

film and the rotation inertia of the rotor are small. The pressure fluctuation of the gas 

supply has a significant effect on the rotor operation, and the rotor axis trajectory is 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



blurred. As the rotation speed increases, the rotor vibration frequency caused by the 

unbalanced quantity gradually approaches the natural frequency of the test machine. 

Resonance occurs at the first critical speed 17650r/min and the rotor vibration 

amplitude reaches the maximum value. Across the first critical speed, the rotor speed 

continues to increase in a certain range, and the rotor vibration amplitude begins to 

decrease. Rotor rotation inertia and radial stability increase, and the influence of gas 

supply pressure fluctuation on the rotor operation is reduced. The rotor vibration 

frequency is strengthened and gradually dominated, and the rotor axis trajectory 

becomes clear and presents a single ellipse. The data processing system extracts the test 

data of rotor speed of 9600r/min, 17500r/min, and 20300r/min, and draws the axis 

trajectory and spectrogram of the rotor, as shown in Figure 23-25. 

 

Figure 23. 9600 r/min axis trajectory diagram and spectrogram of test results 

 

Figure 24. 17650 r/min axis trajectory diagram and spectrogram of test results 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Figure 25. 20300 r/min axis trajectory diagram and spectrogram of test results 

7.3.2 Stiffness and damping test 

When the rotor of a gas bearing is running, the rotor deviates from the steady state of 

equilibrium and moves around it. The relation expression of the displacement 

disturbance and the velocity disturbance and the increment of the gas film force is 

expressed, combined with the bearing rotor the system dynamics equation calculates the 

stiffness and damping coefficients of the gas film.  

When the bearing rotor axis moves slightly in a static equilibrium position, the 

linear increment of the gas film force is expressed as: 

 
0

0

x x x xx xy xx xy

y y y yx yy yx yy

F F F k x k y b x b y

F F F k x k y b x b y

          

          

 (7) 

When the rotor moves slightly in a static equilibrium position, the rotor center 

deviates from the static equilibrium position in x and y directions. The instantaneous 

operating parameters are , , , , ,x y x y x y    , and the corresponding increment of the gas 

film force is Fx, Fy. The dynamic equations of the bearing rotor system are as follows: 

 
0

0

x

y

mx F

my F

  


  
 (8) 

The stiffness damping model equation of the gas film can be obtained by 

simultaneous equation (7) and equation (8). 
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 (9) 

Solving the gas film stiffness and damping coefficient of the model equation (9), 

and the constant coefficients of the model equation must first be obtained. And the 

constant coefficients , , , , ,x y x y x y     can be obtained by data pretreatment. 

To solve for the gas film stiffness and damping coefficient, each equation in 

Equation (9) must consist of four different equations, where the determinant of the 

coefficient matrix is nonzero. 

During the experiment, the sampling frequency of the data collection system is 

very high. It is considered that the rotor only undergoes minute movements during the 

four sampling processes, and the rotor operation state and the gas film force change are 

small and negligible. Therefore, the preprocessed data of the first to fourth sampling in 

the MYSQL database are substituted into the model matrix equation 9 for calculation, 

and the stiffness and damping coefficient of the gas film at the fourth sampling can be 

obtained. According to the above method, the Matlab program for the stiffness and 

damping coefficient of the gas film is compiled, and the rolling iteration method is used 

to process and calculate the test data, and the stiffness and damping coefficient of the 

gas film of the bearing rotor is obtained. 
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 (10) 

The bearing gas pressure of the gas bearing test bench is adjusted to 0.3Mpa for 

test. The data processing system extracts the test data of the gas film force, vibration 

displacement, vibration speed and rotation speed of the rotor of 10000r/min, 20000r/min, 

30000r/min, 40000r/min, 50000r/min and 55000r/min respectively. According to 

equations (10), the gas film stiffness and damping Matlab program is used to process 

and calculate the experimental data, and the stiffness and damping coefficient of the gas 

film are obtained. Finally, the stiffness and damping coefficients with an eccentricity 

ratio of 0.3 is extracted, and the stiffness and damping coefficient of the bearing are 
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obtained by the average value. The relationship between the gas film stiffness damping 

and the rotation speed is shown in Figure 26. 

 

Figure 26. Comparison of simulation results and test results 

The results show that the comparing the results of simulation and experimental 

data, the change trends of the two are consistent, and there is a certain error between the 

simulation results and the experimental results.The assumption of some boundary 

conditions is more ideal when simulating simulation calculation. And the results are 

related to the solver model, the grid quality, the boundary conditions and the dynamic 

grid model, and the parameter settings. The actual rotor mass unbalance, bearing 

machining error, shafting assembly error and other factors have a great influence on the 

test results. Therefore, there are some errors in simulation and experimental data. On the 

whole, the test data is consistent with the simulation results. The correctness and 

validity of the simulation method of 6 DOF passive grid based on FLUENT software 

are verified. 
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8. Conclusion 

(1) Based on FLUENT, the pressure distribution on the gas film grid point of the 

hybrid gas bearings was calculated by using the 6 DOF passive grid method, which can 

simulate the lubrication characteristics of the gas film transient flow field accurately. 

Hybrid gas bearings with static pressure and dynamic pressure nonlinear coupling effect, 

which makes the pressure distribution in the circumferential direction more uniform and 

the load distribution more reasonable. Dynamic and static pressure coupling effect can 

not only enhance the bearing performance of the gas film, but also optimize the 

dynamic characteristics. It can effectively restrain the generation of whirl and 

oscillation, and improve the stability of high speed operation. 

(2) Different rotation speed and gas supply pressure cause the change of flow 

field inside the gas film, which will change the pressure distribution, nonlinear gas film 

force, stiffness and damping coefficients during the operation of the gas film. The 

analysis shows that the variation of cross stiffness is the main reason of the half 

frequency whirl caused by the gas film whirl force greater than the gas film damping. 

Increasing the gas supply pressure of hybrid gas bearings will change the characteristics 

of the gas film flow field and improve the stiffness and damping during operation. It can 

effectively restrain the generation of whirl, and improve the stability. 

(3) For hybrid gas bearings, changing the tangential angle can produce the 

circumfluence phenomenon to reconstruct the dynamic characteristics of the gas film. It 

can change the coupling relationship between the natural frequencies of the system and 

the whirl frequencies of the gas film. For hybrid gas bearings, the tangential angle 

between 55°- 60°, both to ensure the gas film have greater stiffness, while also have a 

more reasonable damping characteristics, to ensure the bearing operated high-speed and 

smoothly. 
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