6 research outputs found

    Association of 24 h–systolic blood pressure variability and cardiovascular disease in patients with obstructive sleep apnea

    No full text
    Abstract Background To evaluate association of 24 h–systolic blood pressure (SBP) variability and obstructive sleep apnea (OSA) as defined by the apnea-hypopnea index ≥5/h; and association of 24 h–SBP variability and prevalent cardiovascular disease (CVD) in OSA patients. Methods Participants underwent polysomongraphy to evaluate the presence of OSA, and 24 h–ambulatory blood pressure monitoring was applied to evaluate 24 h–SBP variability as indexed by weighted 24 h–standard deviation (SD) of SBP. Between-group differences were evaluated in participants with and without OSA. Participants with OSA were divided into high and low 24 h–SBP variability groups and between-group differences were evaluated. Results Mean age of 384 participants was 50 years old and 42.2% had OSA. Mean 24 h–systolic/diastolic BP were 130/78 mmHg, with mean weighted 24 h–SD of systolic/diastolic BP were 12.9/7.3 mmHg. Compared to those without OSA, OSA participants had higher clinic-, 24 h-, daytime- and nighttime-SBP, and weighted 24 h, daytime- and nighttime-SD of SBP. Age, prevalent CVD and OSA, usage of angiotensin converting enzyme inhibitor/angiotensin receptor blocker, calcium channel blocker and diuretic were significantly associated with 24 h–SBP variability. In OSA patients, compared to those with low variability, participants with high variability had higher weighted 24 h, daytime- and nighttime-SD of SBP. After adjusted for covariates including clinic-SBP and 24 h–SBP, per 1-SD increment weighted 24 h–SD of SBP was associated with 21% increased prevalent CVD. Conclusions Patients with newly-diagnosed OSA have higher 24 h–SBP variability compared to those without OSA; in OSA patients, increased 24 h–SBP variability is associated with increased prevalence of CVD

    Hydrogen Sulfide-Preconditioning of Human Endothelial Progenitor Cells Transplantation Improves Re-Endothelialization in Nude Mice with Carotid Artery Injury

    No full text
    Background/Aims: The aim of present study was to test the hypothesis that preconditioning with sodium hydrosulfide (NaHS) could enhance the capacity of migration, adhesion and proliferation of endothelial progenitor cells (EPCs) in vitro, and also could improve the efficacy of EPCs transplantation for re-endothelialization in nude mice with carotid artery injury. The paper further addressed the underlying mechanisms. Methods: EPCs were isolated from peripheral blood mononuclear cells of healthy male volunteers and the markers of EPCs were analyzed by flow cytometry. Thereafter, different concentrations of NaHS (25, 50, 100, 200 and 500 uM) were used for preconditioning EPCs. In vitro and in vivo migration, adhesion and proliferation as well as nitric oxide (NO) production of EPCs were evaluated. Carotid artery injury model was produced in nude mice and thereafter, NaHS-preconditioned EPCs were transplanted in order to evaluate their capacity of re-endothelialization. Results: Cellular immuno-staining showed that isolated cells expressed the key markers of EPCs. In vitro, EPCs proliferation rates and NO production were gradually increased in a NaHS-concentration dependent manner, while these benefits were blocked at a concentration of 500 uM NaHS. Similarly, the migration and adhesion rates of EPCs were also increased the most prominently at a concentration of 200 µM NaHS. In vivo, compared to the control group, treatment with NaHS-preconditioned EPCs significantly enhanced the capacity of re-endothelialization of EPCs. Fluorescent microscope revealed that there were more EPCs homing to the injury vessels in the NaHS-preconditioned EPCs group than the non-preconditioned group. With the administration of AMPK or eNOS inhibitors respectively, the above benefits of NaHS-preconditioning were abrogated. Conclusion: These results suggested that NaHS-preconditioning enhanced the biological function and re-endothelialization of EPCs through the AMPK/eNOS signaling pathway

    Mechanical Strain Induces Expression of C-Reactive Protein in Human Blood Vessels

    No full text
    corecore