11 research outputs found

    Lithofacies paleogeography mapping and reservoir prediction in tight sandstone strata: A case study from central Sichuan Basin, China

    Get PDF
    AbstractSand-rich tight sandstone reservoirs are potential areas for oil and gas exploration. However, the high ratio of sandstone thickness to that of the strata in the formation poses many challenges and uncertainties to traditional lithofacies paleogeography mapping. Therefore, the prediction of reservoir sweet spots has remained problematic in the field of petroleum exploration. This study provides new insight into resolving this problem, based on the analyses of depositional characteristics of a typical modern sand-rich formation in a shallow braided river delta of the central Sichuan Basin, China. The varieties of sand-rich strata in the braided river delta environment include primary braided channels, secondary distributary channels and the distribution of sediments is controlled by the successive superposed strata deposited in paleogeomorphic valleys. The primary distributary channels have stronger hydrodynamic forces with higher proportions of coarse sand deposits than the secondary distributary channels. Therefore, lithofacies paleogeography mapping is controlled by the geomorphology, valley locations, and the migration of channels. We reconstructed the paleogeomorphology and valley systems that existed prior to the deposition of the Xujiahe Formation. Following this, rock-electro identification model for coarse skeletal sand bodies was constructed based on coring data. The results suggest that skeletal sand bodies in primary distributary channels occur mainly in the valleys and low-lying areas, whereas secondary distributary channels and fine deposits generally occur in the highland areas. The thickness distribution of skeletal sand bodies and lithofacies paleogeography map indicate a positive correlation in primary distributary channels and reservoir thickness. A significant correlation exists between different sedimentary facies and petrophysical properties. In addition, the degree of reservoir development in different sedimentary facies indicates that the mapping method reliably predicts the distribution of sweet spots. The application and understanding of the mapping method provide a reference for exploring tight sandstone reservoirs on a regional basis

    Thermophoretic collection of virus-laden (SARS-CoV-2) aerosols

    Get PDF
    Detecting the existence of SARS-CoV-2 in the indoor atmosphere is a practical solution to track the prevalence and prevent the spread of the virus. In this work, a thermophoretic approach is presented to collect the novel coronavirus-laden aerosols from the air and accumulate to high concentrations adequate for the sensitivity of viral RNA detection. Among the factors, the density and particle size have negligible effects on particle trajectory, while the vertical coordinates of particles increase with the rise in heating source temperature. When the heating temperature is higher than 355 K, all of the particles exit the channel from one outlet; thus, the collecting and accumulating of virus-laden aerosols can be realized. This study provides a potential approach to accelerate the detection of SARS-CoV-2 and avoid a false negative in the following RNA test. © 2021 Author(s)

    Permian-Triassic boundary microbialites (PTBMs) in soutwest China: implications for paleoenvironment reconstruction

    Get PDF
    Permian–Triassic boundary microbialites (PTBMs) are commonly interpreted to be a sedimentary response to upwelling of anoxic alkaline seawater and indicate a harsh marine environment in the Permian–Triassic transition. However, recent studies propose that PTBMs may instead be developed in an oxic environment, therefore necessitating the need to reassess the paleoenvironment of formation of PTBMs. This paper is an integrated study of the PTBM sequence at Yudongzi, northwest Sichuan Basin, which is one of the thickest units of PTBMs in south China. Analysis of conodont biostratigraphy, mega- to microscopic microbialite structures, stratigraphic variations in abundance and size of metazoan fossils, and total organic carbon (TOC) and total sulfur (TS) contents within the PTBM reveals the following results: (1) the microbialites occur mainly in the Hindeodus parvus Zone but may cross the Permian–Triassic boundary, and are comprised of, from bottom to top: lamellar thrombolites, dendritic thrombolites and lamellar-reticular thrombolites; (2) most metazoan fossils of the microbialite succession increase in abundance upsection, so does the sizes of bivalve and brachiopod fossils; (3) TOC and TS values of microbialites account respectively for 0.07 and 0.31 wt% on average, both of which are very low. The combination of increase in abundance and size of metazoan fossils upsection, together with the low TOC and TS contents, is evidence that the Yudongzi PTBMs developed in oxic seawater. We thus dispute the previous view, at least for the Chinese sequences, of low-oxygen seawater for microbialite growth, and question whether it is now appropriate to associate PTBMs with anoxic, harsh environments associated with the end-Permian extinction. Instead, we interpret those conditions as fully oxygenated.13th Five-Year Plan National Scientific and Technology Major Project (2016ZX05004002-001); National Natural Science Foundation of China (41602166)

    Finger-Vein Verification Based on Multi-Features Fusion

    Get PDF
    This paper presents a new scheme to improve the performance of finger-vein identification systems. Firstly, a vein pattern extraction method to extract the finger-vein shape and orientation features is proposed. Secondly, to accommodate the potential local and global variations at the same time, a region-based matching scheme is investigated by employing the Scale Invariant Feature Transform (SIFT) matching method. Finally, the finger-vein shape, orientation and SIFT features are combined to further enhance the performance. The experimental results on databases of 426 and 170 fingers demonstrate the consistent superiority of the proposed approach

    Gut Microbiome Variation Along A Lifestyle Gradient Reveals Threats Faced by Asian Elephants

    No full text
    The gut microbiome is closely related to host nutrition and health. However, the relationships between gut microorganisms and host lifestyle are not well characterized. In the absence of confounding geographic variation, we defined clear patterns of variation in the gut microbiomes of Asian elephants (AEs) in the Wild Elephant Valley, Xishuangbanna, China, along a lifestyle gradient (completely captive, semicaptive, semiwild, and completely wild). A phylogenetic analysis using the 16S rRNA gene sequences highlighted that the microbial diversity decreased as the degree of captivity increased. Furthermore, the results showed that the bacterial taxon WCHB1-41_c was substantially affected by lifestyle variations. qRT-PCR analysis revealed a paucity of genes related to butyrate production in the gut microbiome of AEs with a completely wild lifestyle, which may be due to the increased unfavorable environmental factors. Overall, these results demonstrate the distinct gut microbiome characteristics among AEs with a gradient of lifestyles and provide a basis for designing strategies to improve the well-being or conservation of this important animal species

    Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance, SW China

    No full text
    Based on newly drilled well data in the Gaoshiti area in the central Sichuan Basin, profile data of more than 150 field outcrops of the regional geological survey, and stratigraphic division and correlation of more than 30 wells in the Sichuan Basin and its adjacent areas, combined with regional seismic data, moldic methods are comprehensively used to restore the karst paleogeomorphy of the Dengying Formation, and thus studying the paleogeographic pattern and the significance of oil and gas exploration. The Sichuan Basin was surrounded by paleo-lands/underwater highlands in the late Sininan Dengying period, including Kangdian paleo-land in the west, Songpan paleo-land in the northwest, Hannan paleo-land in the north, Qianjiang-Zheng'an, Zhenba and Wuxi-Jianshi underwater highlands in the southeast and northeast. The Sichuan Basin was adjacent to Jiangnan Basin southeastwards and Qinling paleo-ocean northeastwards respectively. Affected by the separation of NS-striking Zitong-Junlian Aulacogen, NE-striking Langzhong-Tongjiang and Chongqing-Kaixian depressions in this basin, the Sichuan Basin presents the NS-trending framework of “three uplifts (Zhenba, Chuanzhong and Qianjiang-Zheng'an) and two depressions (Langzhong-Tongjiang and Chongqing-Kaixian)”, and is divided into two relatively isolated EW-trending paleo-uplift systems (NS-striking Mianyang-Leshan-Xichang paleo-uplift and nearly NE-striking Chuanzhong paleo-uplift). Controlled by karst paleogeomorphy of the Sinian Dengying Formation, the pattern of karst landscape consists of five secondary geomorphic units, such as karst highland, karst platform, karst slope, karst depression and karst basin, of which the karst platform and karst slope are the favorable zones for the development of karst reservoirs, providing advantages for the formation of large gas fields. Key words: paleogeomorphologic restoration, moldic method, weathering crust paleokarst, karst reservoir, paleogeographic framework, Sinian Dengying Formation, Sichuan Basi

    Quantitative simulation of the densification process of sandstone reservoir in the Xu 3 Member of Xujiahe Formation in western Sichuan Depression, Sichuan Basin

    No full text
    In order to clarify the densification process and quantitatively restore the porosity evolution of the Xu 3 Member sandstone reservoir in western Sichuan Depression, the diagenesis of the Xu 3 Member was system atically analyzed using thin sections, scanning electron microscope and fluid inclusion analysis. Meanwhile, the relationship between diagenesis and porosity evolution was discussed.Based on the study of formation burial history and thermal evolution history, a mathematical model of porosity evolution for the Xu 3 Member sandstone was established to clarify the densification process of sandstone reservoir using the principle of effect simulation, that is, the specific diagenesis was not simulated, but the comprehensive superposition results of various diagenesis were simulated through geological parameters.It found that lithic quartz sandstone and lithic sandstone were mainly developed in the Xu 3 Member, and sand stone underwent compaction, cementation, dissolution and others. Among them, compaction and cementation are the main destructive diagenesis and occur in the whole evolution process, while dissolution is the main constructive diagenesis and only occurs in a specific evolution stage with window characteristics.Based on the current observation of the relationship between porosity and depth of sandstone, the sandstone had undergone compaction and cementation, corrosion, and compaction and cementation after corrosion.As a result, the porosity evolution could be divided into three stages: normal compaction stage, pore increasing stage during corrosion andnormal compaction after corrosion.Furthermore, the porosity evolution could be divided into porosity decreasing model and porosity increasing model.These two models were superimposed on the three stages of porosity evolution, and a three-stage piecewise function characterized the porosity evolution was proposed.Using this function, the total porosity evolution simulation of sandstone reservoir could be realized.Simulation results found that the Xu 3 Member in western Sichuan Depression was dominated by early densification due to compaction and early cementation using the proposed quantitative model

    Karst paleogeomorphology of the fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin, SW China: Restoration and geological significance

    No full text
    Based on 3-D seismic data and drill-hole data in Moxi-Gaoshiti area, the impression seismic thickness from the top of Longwangmiao Formation, which is easier traced, to the bottom of Cambrian System was selected to characterize the karst paleogeomorphology of the fourth Member of Dengying Formation. The paleogeomorphology of the member can be further divided into three geomorphic units: karst platform, slope and superimposed slope, which had different paleohydrologic conditions, and thus different karstification intensity and reservoir quality. Among them, the superimposed slope with the strongest dissolution, has larger solution groove and cave systems, where the reservoirs with mainly honeycombed dissolved pores and cavities as storage space, are best in quality; the platform slope with weaker dissolution, has smaller solution groove and cave systems, where the reservoirs are poorer than those in the superimposed slope; the karst platform with the weakest dissolution, has piebald karst systems mainly, where the reservoirs with mainly pinhole to smaller dissolved pores and cavities as storage space, are poorer in quality on the whole, but there are some good quality reservoir bodies in local areas. The results show that, besides the highly explored scarp belt, the slope in the intra-platform with low exploration degree can also be favorable exploration area of the fourth member of Dengying Formation. Key words: paleogeomorphology, karst platform, slope, superimposed slope, Cambrian Longwangmiao Formation, Sinian Dengying Formation, Moxi-Gaoshiti area, Sichuan Basi
    corecore