11 research outputs found

    Identification of novel antifungal skeleton of hydroxyethyl naphthalimides with synergistic potential for chemical and dynamic treatments

    Get PDF
    The invasion of pathogenic fungi poses nonnegligible threats to the human health and agricultural industry. This work exploited a family of hydroxyethyl naphthalimides as novel antifungal species with synergistic potential of chemical and dynamic treatment to combat the fungal resistance. These prepared naphthalimides showed better antifungal potency than fluconazole towards some tested fungi includin

    Identification of Novel Antifungal Skeleton of Hydroxyethyl Naphthalimides with Synergistic Potential for Chemical and Dynamic Treatments

    No full text
    The invasion of pathogenic fungi poses nonnegligible threats to the human health and agricultural industry. This work exploited a family of hydroxyethyl naphthalimides as novel antifungal species with synergistic potential of chemical and dynamic treatment to combat the fungal resistance. These prepared naphthalimides showed better antifungal potency than fluconazole towards some tested fungi including Aspergillus fumigatus, Candida tropicalis and Candida parapsilosis 22019. Especially, thioether benzimidazole derivative 7f with excellent anti-Candida tropicalis efficacy (MIC = 4 μg/mL) possessed low cytotoxicity, safe hemolysis level and less susceptibility to induce resistance. Biochemical interactions displayed that 7f could form a supramolecular complex with DNA to block DNA replication, and constitute a biosupermolecule with cytochrome P450 reductase (CPR) from Candida tropicalis to hinder CPR biological function. Additionally, 7f presented strong lipase affinity, which facilitated its permeation into cell membrane. Moreover, 7f with dynamic antifungal potency promoted the production and accumulation of reactive oxygen species (ROS) in cells, which destroyed the antioxidant defence system, led to oxidative stress with lipid peroxidation, loss of glutathione, membrane dysfunction and metabolic inactivation, and eventually caused cell death. The chemical and dynamic antifungal synergistic effect initiated by hydroxyethyl naphthalimides was a reasonable treatment window for prospective development

    Deciphering the Biological Effects of Radiotherapy in Cancer Cells

    No full text
    Radiotherapy remains an effective conventional method of treatment for patients with cancer. However, the clinical efficacy of radiotherapy is compromised by the development of radioresistance of the tumor cells during the treatment. Consequently, there is need for a comprehensive understanding of the regulatory mechanisms of tumor cells in response to radiation to improve radiotherapy efficacy. The current study aims to highlight new developments that illustrate various forms of cancer cell death after exposure to radiation. A summary of the cellular pathways and important target proteins that are responsible for tumor radioresistance and metastasis is also provided. Further, the study outlines several mechanistic descriptions of the interaction between ionizing radiation and the host immune system. Therefore, the current review provides a reference for future research studies on the biological effects of new radiotherapy technologies, such as ultra-high-dose-rate (FLASH) radiotherapy, proton therapy, and heavy-ion therapy

    Human Parathyroid Hormone Analog (3–34/29–34) promotes wound re-epithelialization through inducing keratinocyte migration and epithelial–mesenchymal transition via PTHR1-PI3K/AKT activation

    No full text
    Abstract Background Re-epithelialization is important in the process of wound healing. Various methods have been identified to expedite the process, but their clinical application remains limited. While parathyroid hormone (PTH) has shown promising results in wound healing due to its role in promoting collagen deposition and cell migration, application is limited by its potentially inhibitive effects when being continuously and locally administrated. Herein, we developed a novel PTH analog, Human parathyroid hormone (hPTH) (3–34/29–34) (henceforth MY-1), by partially replacing and repeating the amino acid sequences of hPTH (1–34), and evaluated its effect on skin wound re-epithelialization. Methods CCK-8, colony formation unit assay, and Ki67 immunofluorescent staining were performed to evaluate the effect of MY-1 on HaCaT cell proliferation. Then, wound scratch assay, Transwell assay and lamellipodia staining were carried out to evaluate the effect of MY-1 on cell migration. Moreover, the epithelial–mesenchymal transition (EMT) markers were measured using qPCR and western blot analysis. For in-vivo drug delivery, gelatin methacryloyl (GelMA) hydrogel was employed to load the MY-1, with the physicochemical characteristics evaluated prior to its application in wound models. Then, MY-1’s role in wound healing was determined via acute skin wound models. Finally, the mechanism that MY-1 activated was also detected on HaCaT cells and in-vivo wound models. Results In-vitro, MY-1 accelerated the migration and EMT of HaCaT cells, while having little effect on cell proliferation. GelMA and MY-1-incorporated GelMA hydrogels showed similar physicochemical characteristics and were used in the in-vivo studies, where the results revealed that MY-1 led to a stronger re-epithelialization by inducing basal keratinocyte migration and EMT. Further studies on in-vivo wound models and in-vitro HaCaT cells revealed that MY-1 regulated cell migration and EMT through activating PI3K/AKT signaling. The parathyroid hormone type 1 receptor (PTHR1), the main receptor of PTH, was found to be the upstream of PI3K/AKT signaling, through interfering PTHR1 expression with a small interference RNA following detection of the PI3K/AKT activation. Conclusion Collectively, our study demonstrated that MY-1 accelerates skin wound re-epithelialization by inducing keratinocyte migration and EMT via PTHR1-PI3K/AKT axis activation. Video Abstrac

    An exceptional fluorescence turn-on nucleoside: Lighting up single-stranded DNA with constant brightness regardless neighboring bases

    No full text
    Fluorescent nucleobase analogs (FBAs) have proven valuable for studying nucleic acid structure and dynamics. Regrettably, most FBAs exhibit reduced quantum yields when incorporated into DNA, particularly when neighboring residues are present. In this study, we introduce a turn-on nucleoside (thieno cyclopenta -dU, 3b) that increases the brightness of single-stranded oligonucleotides by approximately 10-fold compared to the free nucleoside, regardless of neighboring bases. Furthermore, an up to 50-fold increase in brightness is observed during duplex formation. To the best of our knowledge, compound 3b is the only turn-on type fluorescent nucleoside known to maintain a stable quantum yield after incorporation, and it can be well-accepted by DNA polymerases. These findings highlight the potential of turn-on FBAs for fluorescence sensing applications in enzymatic DNA synthesis and in vivo strand hybridization
    corecore