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Abstract: The invasion of pathogenic fungi poses nonnegligible threats to the human health and
agricultural industry. This work exploited a family of hydroxyethyl naphthalimides as novel anti-
fungal species with synergistic potential of chemical and dynamic treatment to combat the fungal
resistance. These prepared naphthalimides showed better antifungal potency than fluconazole to-
wards some tested fungi including Aspergillus fumigatus, Candida tropicalis and Candida parapsilosis
22019. Especially, thioether benzimidazole derivative 7f with excellent anti-Candida tropicalis efficacy
(MIC = 4 µg/mL) possessed low cytotoxicity, safe hemolysis level and less susceptibility to induce
resistance. Biochemical interactions displayed that 7f could form a supramolecular complex with
DNA to block DNA replication, and constitute a biosupermolecule with cytochrome P450 reductase
(CPR) from Candida tropicalis to hinder CPR biological function. Additionally, 7f presented strong
lipase affinity, which facilitated its permeation into cell membrane. Moreover, 7f with dynamic anti-
fungal potency promoted the production and accumulation of reactive oxygen species (ROS) in cells,
which destroyed the antioxidant defence system, led to oxidative stress with lipid peroxidation, loss
of glutathione, membrane dysfunction and metabolic inactivation, and eventually caused cell death.
The chemical and dynamic antifungal synergistic effect initiated by hydroxyethyl naphthalimides
was a reasonable treatment window for prospective development.

Keywords: naphthalimide; antifungal; reactive oxygen species; membrane

1. Introduction

Pathogenic fungal diseases account for about 60% of human and animal diseases,
which have the characteristics of great harmfulness, wide spread and difficult to control
thoroughly [1]. Recently, the widely used chemical agents may cause drug resistance of
pathogens and form ecological hidden dangers that are difficult to predict. Therefore, it is
urgent to develop novel antifungal agents with high effectivity and safety to meet the needs
of survival and development of mankind. For the purpose of solving this huge challenge,
it is a pragmatic tactic to discover new means to heighten the fungicidal effects [2,3]. In
the methods to overcome resistance, the integration of dynamic treatment dominated by
reactive oxidative species (ROS) with traditional chemical treatment may express a strategy
to defeat fungi [4,5]. The effectivity of chemical drug treatment is self-explanatory, and
the excess expression of ROS, the dominators of dynamic treatment, directly causes the
imbalance of redox system and oxidative stress, which can trigger DNA mutation, damage
cell lipids and proteins and ultimately result in cell death [6,7]. Moreover, pathological
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cells are more likely to be exposed to oxidative stress, so enhancing intracellular ROS
levels and impairing antioxidant systems can disturb the balance of prooxidant-antioxidant
environment of compromised cells and trigger cell death [8,9]. Therefore, antifungal agents
that efficaciously trigger the generation and accumulation of ROS display a conspicuous
battery of drug candidates worthy of further evaluation for sufferers with fungal infection
in clinical trials.

Naphthalimide moiety as a unique skeleton with large tricyclic planar configura-
tion, cycloheximide and naphthalene framework, has been supposed as a DNA-targeting
chemotherapy backbone toward compromised cells [10–13]. It can intercalate into the
base pair of DNA double strands, causing the double strands to rupture, which in turn
affects DNA synthesis and leads to DNA damage [14–16]. The amido group presented
in naphthalimide moiety can bind non-covalently with a variety of functional enzymes
including lipase to exert antifungal activity. Modifications of naphthalimido moiety at the
N-position and 4-position have a prominent effect on the interactions with enzymes and
DNA [17–19]. Besides, numerous molecules containing naphthalimido moiety have been
proved to be expected triggers for the production and accumulation of ROS by means of
DNA damage channel, which would tremendously facilitate its application in medicinal
chemical biology [20–23]. Therefore, naphthalimido moiety was considered as a promising
chemical and dynamic antifungal structural backbone by manipulating supramolecular
interactions and ROS regulation. Ethanol has long been applied as disinfectants in life, and
introduction of hydroxyethyl fragment as hydrogen bond donor, can affect supramolecular
interaction with biomolecules and might helpfully improve antifungal activities [24–27].

With respect to the foregoing, taking advantage of the structure and biochemical
properties, hydroxyethyl fragment was merged into the N-position of naphthalimide core
and the bromine atom at 4-position was replaced by amines, ethers and thioethers to afford
desirable potential antifungal molecules (Figure 1). The structural properties, binding
effects with DNA and antifungal activities of target naphthalimide compounds were
assessed to investigate its chemicobiological behaviors. The medicinal chemical potentials
of highly active compound were further elaborated, including toxicity and haemolytic
assessment, ADME study, resistance development, lipase affinity, biochemical interactions
with DNA and cytochrome P450 reductase, up-regulation of ROS and ROS-mediated
apoptosis pathways, to explore its application possibility.
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2. Results and Discussion
2.1. Chemistry

Novel naphthalimido hybrids modified by hydroxyethyl fragment were derived start-
ing from commercial 4-bromo-1,8-naphthalic anhydride. As outlined in Schemes 1 and 2,
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the available 4-bromo-1,8-naphthalic anhydride 1 was treated with ethanolamine in the
presence of ethanol to offer hydroxyethyl naphthalimido intermediate 2 with 86.7% yield.
Intermediate 2 was further reacted with amines, ethers and thioethers to give the target
amine derivatives 3a–b, 4a–c and 5, hydroxyl derivatives 6a–c, mercaptoazoles 7a–f and
sulfhydrypyrimidines 8a–d with moderate to good yields [28,29]. The chemical structures
of all novel hydroxyethyl naphthalimides were confirmed by 1H NMR, 13C NMR and
HRMS spectra, and the purities were determined by HPLC spectra. In the 13C NMR spectra
for hydroxyethyl naphthalimides, the chemical shifts around 160–165 ppm were primarily
attributed to the carbons in carbonyl groups of naphthalimide backbone, while in the
1H NMR spectra, the chemical shifts in the range of 8.85–7.23 ppm were deemed as the
aromatic hydrogens (H-Ar) fused in naphthalimide backbone. Furthermore, the HRMS
results were consistent with the structures of novel hydroxyethyl naphthalimides that
displayed in the schemes, and purity analysis showed that the purities of all hydroxyethyl
naphthalimides were above 95%.
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Scheme 1. Synthetic route of aliphatic amines 3a–b, 4a–c, 5 and aliphatic ethers 6a–c. Reagents
and conditions: (i) ethanolamine, ethanol, reflux; (ii) alkylamines, 2-methoxyethanol, 120 ◦C;
(iii) hydroxyethylamines, triethylamine, 1,4-dioxane, reflux; (iv) L-proline, 2-methoxyethanol, 120 ◦C;
(v) hydroxyl compounds, reflux.
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2.2. Relationship between DNA Binding and Antifungal Assay

The supramolecular interactions of the hydroxyethyl naphthalimides with DNA and
their antifungal activities in vitro were further evaluated. The binding effects of compounds
with DNA were measured using UV-vis spectra. All compounds exhibited outstanding
binding abilities with DNA (Figure 2), which were potentially correlated with their antifun-
gal activities (Table 1).
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Table 1. In vitro antifungal activities as minimum inhibitory concentrations (MIC, µg/mL) for
hydroxyethyl naphthalimides.

Compounds
Fungi

Candida albicans Candida
albicans 90023 Aspergillus fumigatus Candida tropicalis Candida

parapsilosis 22019

2 128 256 128 64 64
3a 128 64 128 32 128
3b 128 64 128 32 128
4a 128 64 128 16 32
4b 128 128 128 64 64
4c 256 128 64 64 128
5 128 64 128 128 128

6a 256 64 64 32 64
6b 256 128 256 128 128
6c 256 64 128 32 16
7a 256 64 128 8 32
7b 256 128 256 64 256
7c 256 256 256 128 256
7d 128 64 64 32 32
7e 128 64 64 32 32
7f 128 128 32 4 64
8a 128 64 128 32 64
8b 128 64 128 32 64
8c 128 64 128 16 32
8d 32 32 64 16 32

Fluconazole 4 4 512 256 128

The activities of almost all the target compounds towards A. fumigatus and C. tropicalis
were stronger than that of fluconazole. In symmetric amine series 3a–b, the same anti-
fungal values were observed, and diethylamine derivative 3b showed higher DNA bind-
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ing ability. In the hybridization of multiple hydroxyethyl fragments, derivative 4c with
three hydroxyethyl moiety exerted outstanding DNA affinity, indicating that multiple hy-
droxyethyl fragments were advantageous for non-covalent binding to DNA. Among mer-
captoazoles modified hydroxyethyl naphthalimides 7a–f, thioether benzimidazole 7f gave
better anti-C. tropicalis efficacy (MIC = 4 µg/mL) than fluconazole based on the antifungal
activities presented, which was consistent with its excellent DNA binding ability. Similarly,
sulfhydrypyrimidine 8d in sulfhydrypyrimidine series 8a–d performed remarkable DNA
binding ability, and its antifungal activities shared prominent inhibitory efficacy, more
potent than 8a–c. Given antifungal potential of hydroxyethyl naphthalimides, thioether
benzimidazole 7f was used as model compound for farther exploration.

2.3. Supramolecular Interaction of Thioether Benzimidazole 7f with DNA

The specific relationship between DNA and thioether benzimidazole 7f was studied.
With a fixed amount of DNA, absorption spectra were measured with increasing concentra-
tions of 7f. The DNA peak at 260 nm in Figure 3A proportionally disappeared with adding
amount of 7f. A weak hypochromicity between compound 7f and DNA was demonstrated,
and a slight red shift at maximum absorption wavelength was observed possibly due to
the reason that the aromatic chromophore of thioether benzimidazole 7f intercalated into
the helix of DNA following the increasement of the π-π conjugation [30,31].
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Figure 3. (A) Interaction spectra of DNA with different concentrations of thioether benzimidazole
7f (pH = 7.4). c(DNA) = 5.68 × 10−5 mol/L, and c(compound 7f) = 0–0.8 × 10−5 mol/L. Inset:
Comparison of the absorption at 260 nm between the value of compound 7f-DNA complex and the
sum values of free DNA and free compound 7f. (B,C) Competitive reaction between compound
7f and AO (B), DAPI (C) with DNA. c(DNA) = 5 × 10−5 mol·L−1, c(AO) = 2 × 10−5 mol·L−1,
c(DAPI) = 2 × 10−5 mol·L−1 and c(compound 7f) = 0–0.7 × 10−5 mol·L−1. (D) The changes of
fluorescence intensity for AO-DNA and DAPI-DNA with different concentrations of fluorophore 7f.
(F0: only AO-DNA or DAPI-DNA, F: 7f with AO-DNA or DAPI-DNA; λem (AO-DNA) = 537 nm,
λem (DAPI-DNA) = 460 nm).

To expound the binding mode between thioether benzimidazole 7f and DNA, the
existing dyes both commercial acridine orange (AO) and marketable 4′,6-diamidino-2-
phenylindole (DAPI) were used as spectral probes referring the reported literature [32].
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As indicated in Figure 3B–D, the intensity of 7f decreased obviously at 537 nm, which
suggested that 7f could embed into DNA by competing with AO. Moreover, the changes
of fluorescence intensity of AO-DNA and DAPI-DNA with different concentrations of 7f
was compared, and it was found that the effect of 7f on AO-DNA was stronger than that of
DAPI-DNA, indicating that 7f was mainly intercalated into DNA rather than small groove
binding with DNA.

2.4. Cytotoxicity, Hemolysis Assays and Resistance Development Assay

The cytotoxicity and hemolysis undergoing with thioether benzimidazole 7f were
implemented to assess its underlying toxicity. Cytotoxic result showed that compound 7f
had little effect on the growth of LO2 cell line (IC50 = 163 µM) in the high concentration
(100 µg/mL), and after exposure to compound 7f for 1 h, hemolytic rate was lower than 5%
at anti-C. tropicalis concentration, indicating that compound 7f presented relative biosecurity
(Figure 4A,B). These compounds could selectively target fungal cell membranes due to
an electrostatic distinction on the membranes between fungi and mammalian cells [33,34].
Thus, the tendency of resistant development of 7f against C. tropicalis was conducted,
and fluconazole was selected as a positive control (Figure 4C) [35–38]. The MIC values
of thioether benzimidazole 7f almost remained consistent throughout the 16 passages,
whereas that of reference drug fluconazole increased dramatically after the eighth passage.
The result from the resistance study showed that C. tropicalis was unable to develop rapid
resistance against compound 7f.
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2.5. Pharmacokinetic Properties

The online softwares PreADMET and SwissADME were performed to further research
the pharmacokinetic properties and druggability of thioether benzimidazole 7f (Table 2).
The Lipinski rule, a crucial determinant in drug design and exploitation, was applied to
assess theoretical pharmacological activity of thioether benzimidazole 7f [39]. Thioether
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benzimidazole 7f possessed the same bioavailability score with fluconazole and abided by
Lipinski rule, which proved that 7f equipped good pharmacokinetic properties. Besides,
thioether benzimidazole 7f displayed III category acute oral toxicity and passive response
for blood–brain barrier (BBB) criteria, which indicated that compound 7f was uninjurious
for oral administration. All pharmacokinetic parameters revealed that thioether benzimida-
zole 7f implemented considerable pharmacokinetic profile and outstanding drug-likeness.

Table 2. The ADME data 1 of thioether benzimidazole 7f and fluconazole.

Parameters 7f Fluconazole

MW (g/mol) < 500 389.43 306.27
MLog P ≤ 4.15 2.93 1.47

H-bond acceptors ≤ 10 4 7
H-bond donors ≤ 5 2 1
Lipinski violations 0 0

Skin permeation (cm/s) −6.24 −7.92
Human intestinal absorption (HIA, %) 94.42 (+) 98.83 (+)

Acute oral toxicity III III
BBB permeant No No

Bioavailability Score 0.55 0.55
PAINS 0 0

1 ADMET data were calculated by online softwares SwissADME and PreADMET.

2.6. Lipase Affinity of Thioether Benzimidazole 7f

Moreover, thioether benzimidazole 7f presented strong lipase affinity, which facilitated
its permeation into cell membrane. As a crucial enzyme responsible for hydrolysis of lipids,
lipase widely existed in plants, animals and microorganisms. Especially, the phospholipid
layer on the surface of fungi contains a large number of lipases, and antifungal agents
with strong lipase affinity can more easily combine with the cell membrane. Lipase is
a single spherical polypeptide composed of more than 400 amino acid residues, including
seven fixed fluorescent tryptophan [40]. Therefore, when the compound binds with lipase,
the physiological environment of tryptophan residues and the enzyme structure will be
significantly changed, and the corresponding fluorescence intensity will be decreased
(λex = 290 nm, λem = 340 nm). As shown in Figure 5, the fluorescence intensity of lipase
at 340 nm decreased with the increase in the amount of compound 7f, indicating that
compound 7f had strong lipase affinity.
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2.7. Membrane Damage Assay

Membrane depolarization undergoing with 7f was explored using a fluorescent probe
diSC35. The diSC35 dye entering the active cell is separated by the inner and outer
membranes of the fungal cell membrane, and its fluorescence gets quenched. However, the
fluorescence intensity of diSC35 dye will increase following get out of the cell if the fungal
membrane is depolarized by antifungal agents. As displayed in Figure 6A, compared
with the dye labeled by untreated strain, a time-dependent increase was observed in the
fluorescence intensity of the dye for C. tropicalis treated with thioether benzimidazole 7f,
which indicated that 7f could interact with the cell membrane of C. tropicalis and cause its
membrane depolarization.
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Figure 6. (A) Detection of membrane depolarization in C. tropicalis treated with thioether benzimi-
dazole 7f at MIC value (λex = 622 nm, λem = 670 nm); (B) Protein leakage from C. tropicalis treated
with increasing concentrations of 7f; (C) Fluorescence assay of PI uptake in C. tropicalis treated with
7f (λex = 535 nm, λem = 617 nm); (D) Fluorescence micrograph images of PI uptake caused by control
group and compound 7f at 60 min.

Moreover, the membrane permeability of C. tropicalis treated by thioether benzimi-
dazole 7f was detected through estimating the uptake efficiency of propidium iodide (PI).
As a living cell membrane impenetrable dye, PI can permeate the membranes of dead
C. tropicalis strains, but cannot enter integrated living membranes [41–43]. The fact of
a concentration-dependent growth in the PI fluorescence verified the potential of thioether
benzimidazole 7f to cause physical destruction of the C. tropicalis membranes as depicted
in Figure 6C. Further, the PI uptake could be visually confirmed. In Figure 6D, the red
fluorescence appearance of PI dye for C. tropicalis incubated with compound 7f was dis-
tinctly observed, demonstrating that compound 7f could efficiently destroy the membrane
integrity of C. tropicalis.

In addition to the transformation of membrane permeability, the leakage of proteins
from C. tropicalis strains treated by thioether benzimidazole 7f was assessed employing
standard Bradford assay. The result of protein leakage from C. tropicalis was presented in
Figure 6B. It is proof that a dose-dependent enhancement in protein leakage was observed
from C. tropicalis treated by thioether benzimidazole 7f, which indicated membrane damage
and loss of cellular integrity for C. tropicalis strains.
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2.8. Supramolecular Interaction of Compound 7f with Cytochrome P450 Reductase

Cytochrome P450 reductase (CPR) (PDB ID: 6T1U) as an attractive target to investigate
the antifungal mechanism was subjected into ligand–receptor docking to rationalize the
observed antifungal activity and understand the possible mechanism. Compound 7f could
form a biosupramolecular complex with CPR from C. tropicalis by multiple hydrogen bonds
and other non-covalent interactions (Figure 7). The O atom of carbonyl group at 1-position
in naphthalimide was bound to H atom of amino group in SER-441 with a space distance
of 1.8 Å, and the H atom of hydroxyethyl segment could interact with O atom of carboxyl
group in ASP-677 with a space distance of 1.9 Å. The N atom and H atom of benzimidazole
fragment took part in hydrogen bonds reciprocity with TRP-679 and GLU-460 residues
with a space distance of 2.3 Å and 1.9 Å, respectively. All these non-covalent interactions
indicated that compound 7f could interact with cytochrome P450 reductase to disturb its
biological function [44–46].
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2.9. ROS-Mediated Dynamic Treatment

In addition to intrinsic structural advantages by supramolecular interactions with
DNA and CPR, thioether benzimidazole 7f could induce the up-regulation of cytotoxic
ROS to cause inevitable impairment for cells. Additionally, thioether benzimidazole 7f-
induced ROS production on the basis of fluorometric method by 2′,7′-dichlorofluorescin
diacetate (DCFH-DA) dye was evaluated [47–50]. The fluorescence intensity of DCFH-DA
dye at 528 nm preincubated by C. tropicalis strain and thioether benzimidazole 7f, occurred
a concentration-dependent augment, which obviously inferred that thioether benzimida-
zole 7f could trigger ROS accumulation in Figure 8A. Reactive nitrogen intermediates
(RNIs), such as NO, ONOO- and S-nitrosothiols, are similar to ROS and can eradicate
pathogen tissues independently or synergistically by acting on nucleic acids, proteins or
lipids of pathogen [51]. As provided in Figure 8C, the variation trend of intracellular RNIs
in C. tropicalis strains was estimated by Griess’s reaction. It was proof from the conse-
quences that time and dose-dependent changes in RNIs production were noticed from
C. tropicalis treated by thioether benzimidazole 7f. The maximum generation of RNIs in
C. tropicalis strains was acquired at 4 h with diverse contents of thioether benzimidazole 7f,
and the generation of RNIs reduced and held constants after 4 h.
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Figure 8. Measurement of intracellular oxidative stress in C. tropicalis treated with thioether benzimi-
dazole 7f. (A) Intracellular ROS production (λem = 528 nm); (B) Malondialdehyde (λabs = 535 nm);
(C) Reactive nitrogen intermediates (λabs = 540 nm); (D) Loss in GSH activity (λabs = 412 nm);
(E) Presence of resorufin (λem = 590 nm); (F) The picture of the transformation from reduction state
(resorufin) to oxidation state (resazurin).

Excessive ROS and RNIs are in an unbalanced state with the antioxidant protection
mechanism, leading to occurrence of oxidative stress and dysfunction of cells. Membrane
lipid peroxidation is one of the manifestations of oxidative stress. Malondialdehyde (MDA)
is an extremely significant product of membrane lipid peroxidation, so the determination
of MDA can help to understand the degree of membrane lipid peroxidation and further
understand the degree of oxidative damage [52,53]. The production of MDA in C. tropicalis
treated by 7f appeared a dose-dependent increase, which revealed the appearance of
membrane lipid peroxidation and oxidative damage (Figure 8B).

Glutathione is a marker for assessing oxidative stress, and exists in both reduced
form (GSH) and oxidative form (GSSG). The production of excess ROS in the organism
interferences the equilibrium of the redox system and leads to the conversion of GSH
into GSSG. This degree of GSH to GSSG transformation results in a reduction in GSH
activity as an indicator of oxidative stress that can be quantified through the Ellman
experiment [54]. The experimental result of C. tropicalis integrated with increasing amount
of 7f showed a continuous weakening of the GSH activity, and it was widely proved that
the accumulation of ROS was advantageous to conquer the antioxidant defense system
(Figure 8D). Moreover, the oxidative damage of the C. tropicalis undergoing treatment was
assessed by Alamar blue (Resazurin) assay based on fluorescence spectra [55]. After cell
was damaged, the Alamar blue dye turned into oxidation state (resazurin) from reduction
state (resorufin) entering the cell, and the solution gradually changed from pink to blue
(Figure 8E,F).

2.10. Measurement of Metabolic Activity

Alamar blue (Resazurin) assay was applied to assess the intracellular metabolic activ-
ity of the C. tropicalis during treatment and analyze the cell activity and cell proliferation of
C. tropicalis strains [56]. Alamar blue does not exhibit fluorescence in the oxidized state, but
in the reduced state, it occurs a reduction product by pink or red fluorescence. The Alamar
blue dye entering the viable cells was reduced by metabolic intermediates (NADPH/NADP,
FADH/FAD, FMNH/FMN and NADH/NAD) and cytochromes, released into the outside
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of cells, and transformed from the non-fluorescent indigo blue to the fluorescent pink.
However, inactive or damaged cells possessed lower metabolic activity and lower corre-
sponding signals. The result displayed in Figure 9 showed that the metabolic activity of
C. tropicalis reduced upon treatment with thioether benzimidazole 7f. At the increased
concentrations of compound 7f, metabolic activity was gradually decreased and finally
metabolized inert. Thus, the decrease in metabolic activity clearly showed that the damage
of cell membrane of C. tropicalis upon interacting with compound 7f observably impeded
the cellular respiration of C. tropicalis, which disorganized respiration and caused metabolic
arrest and loss of cell viability.
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2.11. Synergistic Effect of Chemical and Dynamic Antifungal Treatment for Hydroxyethyl
Naphthalimide Antifungals

Based on the above, the prepared hydroxyethyl naphthalimides exhibited large in-
hibitory potentiality against the C. tropicalis strain through a synergistic effect of chemical
and dynamic treatment, including DNA damage, membrane disruption, protein leakage,
metabolic deactivation and oxidative damage (Figure 10).

Molecules 2022, 27, x FOR PEER REVIEW 11 of 23 
 

 

metabolic activity of C. tropicalis reduced upon treatment with thioether benzimidazole 
7f. At the increased concentrations of compound 7f, metabolic activity was gradually de-
creased and finally metabolized inert. Thus, the decrease in metabolic activity clearly 
showed that the damage of cell membrane of C. tropicalis upon interacting with compound 
7f observably impeded the cellular respiration of C. tropicalis, which disorganized respi-
ration and caused metabolic arrest and loss of cell viability. 

 

Figure 9. Decrease in metabolic activity of C. tropicalis treated with increasing concentrations of thi-
oether benzimidazole 7f. 

2.11. Synergistic Effect of Chemical and Dynamic Antifungal Treatment for Hydroxyethyl 
Naphthalimide Antifungals 

Based on the above, the prepared hydroxyethyl naphthalimides exhibited large in-
hibitory potentiality against the C. tropicalis strain through a synergistic effect of chemical 
and dynamic treatment, including DNA damage, membrane disruption, protein leakage, 
metabolic deactivation and oxidative damage (Figure 10). 

 

Figure 10. Schematic showing proposed mechanism of hydroxyethyl naphthalimides with syner-
gistic potential of chemical and dynamic antifungal treatment. 

  

Figure 10. Schematic showing proposed mechanism of hydroxyethyl naphthalimides with synergistic
potential of chemical and dynamic antifungal treatment.



Molecules 2022, 27, 8453 12 of 22

3. Materials and Methods
3.1. Instruments and Chemicals

Melting points were recorded on X–6 melting point apparatus and were uncorrected.
TLC analysis was done using pre-coated silica gel plates. The 1H NMR and 13C NMR
spectra were recorded on a Bruker AVANCE III 600 MHz spectrometer using TMS as
an internal standard. The chemical shifts (δ) were reported in parts per million (ppm),
the coupling constants (J) were expressed in hertz (Hz) and signals were described as
singlet (s), doublet (d), triplet (t) as well as multiplet (m). The high resolution mass spectra
(HRMS) were recorded on Bruker Impact II (Bremen, Germany). The purity was measured
by HITACHI primaide (Japan). All raw materials and solvents were commercially available
and were used without further purification.

3.2. Synthesis of Hydroxyethyl Naphthalimides
3.2.1. Synthesis of 6-Bromo-2-(2-hydroxyethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (2)

A mixture of 4-bromo-1,8-naphthalic anhydride (3.0 g, 10.8 mmol), ethanolamine
(1.0 mL, 11.9 mmol) and ethanol (150 mL) was stirred at 80 ◦C for 4 h. The mixture was
cooled to room temperature and the solvent was removed. The solid was obtained without
purification and used in the next step, yield: 86.7%; M.p. 203–204 ◦C.

3.2.2. Synthesis of 6-(Dimethylamino)-2-(2-hydroxyethyl)-1H-benzo[de]isoquinoline-1,3
(2H)-dione (3a)

A mixture of 2 (300 mg, 0.94 mmol), dimethylamine (1 mL, 14.5 mmol), triethy-
lamine (1.3 mL, 9.37 mmol) and 2-methoxyethanol (5 mL) was stirred at 100 ◦C for 6 h.
The mixture was cooled to room temperature and the solvent was removed. The obtained
solid was further purified by silica gel column chromatography (300–400 mesh) (Elu-
ent: ethyl acetate/petroleum ether = 1/10~5, V/V) to produce yellow solid compound 3a
(124 mg); Yield: 46.4%; M.p. 203.5–204.5 ◦C; Purity: 99.9%. 1H NMR (600 MHz, DMSO-d6)
δ 8.48 (d, J = 7.8 Hz, 1H, naphthalimide-H), 8.42 (d, J = 7.1 Hz, 1H, naphthalimide-H),
8.30 (d, J = 8.3 Hz, 1H, naphthalimide-H), 7.73 (m, 1H, naphthalimide-H), 7.18 (d, J = 7.9 Hz,
1H, naphthalimide-H), 4.80 (bs, 1H, OH), 4.13 (t, J = 6.5 Hz, 2H, CH2CH2OH), 3.60 (t,
J = 5.4 Hz, 2H, CH2OH), 3.08 (s, 6H, CH3) ppm; 13C NMR (150 MHz, DMSO-d6) δ 164.21,
163.56 (C=O), 156.94, 132.62, 131.83, 130.91, 130.09, 125.41, 122.89, 113.44, 58.40, 44.85, 42.02,
34.78 ppm; HRMS (ESI) calcd. for C16H16N2O3 [M + H]+: 285.1234; found: 285.1234. The
compounds are characterized in the Supplementary Materials.

3.2.3. Synthesis of 6-(Diethylamino)-2-(2-hydroxyethyl)-1H-benzo[de]isoquinoline-
1,3(2H)-dione (3b)

Compound 3b was prepared according to the procedure described for compound 3a,
starting from 2 (300 mg, 0.94 mmol), diethylamine (1 mL, 9.70 mmol), triethylamine (1.3 mL,
9.37 mmol) and 2-methoxyethanol (5 mL). The pure product 3b was obtained as yellow solid
(150 mg); Yield: 51.2%; M.p. 206.5–207.3 ◦C; Purity: 98.8%. 1H NMR (600 MHz, DMSO-d6)
δ 8.70 (d, J = 8.5 Hz, 1H, naphthalimide-H), 8.43 (d, J = 7.2 Hz, 1H, naphthalimide-H),
8.32 (d, J = 8.2 Hz, 1H, naphthalimide-H), 7.73 (t, J = 7.9 Hz, 1H, naphthalimide-H), 7.27 (d,
J = 8.2 Hz, 1H, naphthalimide-H), 4.79 (bs, 1H, OH), 4.13 (t, J = 6.5 Hz, 2H, CH2CH2OH),
3.60 (t, J = 5.4 Hz, 2H, CH2OH), 3.47 (q, J = 7.1 Hz, 4H, CH2CH3), 1.21 (t, J = 7.1 Hz, 6H,
CH3) ppm; 13C NMR (150 MHz, DMSO-d6) δ 164.24, 163.58 (C=O), 157.13, 132.52, 131.87,
130.92, 130.09, 125.40, 125.19, 122.89, 114.62, 114.21, 59.76, 58.82, 47.56 (CH2), 12.25 (CH3)
ppm; HRMS (ESI) calcd. for C18H20N2O3 [M + H]+: 313.1547; found: 313.1547.

3.2.4. Synthesis of 2-(2-Hydroxyethyl)-6-((2-hydroxyethyl)(methyl)amino)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (4a)

Compound 4a was prepared according to the procedure described for compound 3a,
starting from 2 (500 mg, 1.56 mmol), 2-methylaminoethanol (1.3 mL, 15.62 mmol), triethy-
lamine (1.3 mL, 9.37 mmol) and 1,4-dioxane (5 mL). The pure product 4a was obtained
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as yellow solid (311 mg); Yield: 63.5%; M.p. 207.5–208.1 ◦C; Purity: 99.1%. 1H NMR
(600 MHz, DMSO-d6) δ 8.70 (d, J = 8.5 Hz, 1H, naphthalimide-H), 8.43 (d, J = 7.2 Hz,
1H, naphthalimide-H), 8.32 (d, J = 8.2 Hz, 1H, naphthalimide-H), 7.73 (t, J = 7.9 Hz, 1H,
naphthalimide-H), 7.27 (d, J = 8.2 Hz, 1H, naphthalimide-H), 4.87 (bs, 1H, OH), 4.79 (bs,
1H, OH), 4.13 (t, J = 6.6 Hz, 2H, CH2CH2OH), 3.78 (t, J = 5.3 Hz, 2H, CH2OH), 3.61 (t,
J = 5.6 Hz, 2H, CH2CH2OH), 3.43 (t, J = 5.8 Hz, 2H, CH2OH), 3.07 (s, 3H, CH3) ppm;
13C NMR (150 MHz, DMSO-d6) δ 164.24, 163.58 (C=O), 157.13, 132.52, 131.87, 130.92, 130.09,
125.40, 125.19, 122.89, 114.62, 114.21, 59.76, 58.82, 42.02, 40.87 ppm; HRMS (ESI) calcd. for
C17H18N2O4 [M + H]+: 315.1339; found: 315.1336.

3.2.5. Synthesis of 6-(Ethyl(2-hydroxyethyl)amino)-2-(2-hydroxyethyl)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (4b)

Compound 4b was prepared according to the procedure described for compound 3a,
starting from 2 (500 mg, 1.56 mmol), 2-(ethylamino)ethanol (1.3 mL, 15.6 mmol), triethy-
lamine (1.3 mL, 9.37 mmol) and 1,4-dioxane (5 mL). The pure product 4b was obtained
as yellow solid (267 mg); Yield: 52.2%; M.p. 234.5–235.3 ◦C; Purity: 99.3%. 1H NMR
(600 MHz, DMSO-d6) δ 8.70 (d, J = 8.5 Hz, 1H, naphthalimide-H), 8.43 (d, J = 7.2 Hz,
1H, naphthalimide-H), 8.32 (d, J = 8.2 Hz, 1H, naphthalimide-H), 7.73 (t, J = 7.9 Hz, 1H,
naphthalimide-H), 7.27 (d, J = 8.2 Hz, 1H, naphthalimide-H), 4.87 (bs, 1H, OH), 4.79 (bs, 1H,
OH), 4.13 (t, J = 6.6 Hz, 2H, CH2CH2OH), 3.78 (t, J = 5.3 Hz, 2H, CH2OH), 3.61 (t, J = 5.6 Hz,
2H, CH2CH2OH), 3.50 (q, J = 7.0 Hz, 2H, CH2CH3), 3.43 (t, J = 5.8 Hz, 2H, CH2OH), 1.19 (t,
J = 7.0 Hz, 3H, CH3) ppm; 13C NMR (150 MHz, DMSO-d6) δ 164.24, 163.58 (C=O), 157.13,
132.52, 131.87, 130.92, 130.09, 125.40, 125.19, 122.89, 114.62, 114.21, 59.76, 58.82, 42.02, 40.87,
11.97 ppm; HRMS (ESI) calcd. for C18H20N2O4 [M + H]+: 329.1496; found: 329.1493.

3.2.6. Synthesis of 6-(Bis(2-hydroxyethyl)amino)-2-(2-hydroxyethyl)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (4c)

Compound 4c was prepared according to the procedure described for compound 3a,
starting from 2 (500 mg, 1.56 mmol), diethanolamine (1.64 g, 15.6 mmol), triethylamine
(1.3 mL, 9.37 mmol) and 1,4-dioxane (5 mL). The pure product 4c was obtained as red
solid (285 mg); Yield: 53.2%; M.p. 211.1–211.6 ◦C; Purity: 99.7%. 1H NMR (600 MHz,
DMSO-d6) δ 8.44 (m, 2H, naphthalimide-H), 8.30 (d, J = 26.3 Hz, 1H, naphthalimide-H),
7.72 (m, 1H, naphthalimide-H), 7.18 (d, J = 25.0 Hz, 1H, naphthalimide-H), 4.80 (bs, 1H, OH),
4.13 (t, J = 6.6 Hz, 2H, CH2CH2OH), 3.61 (t, J = 5.3 Hz, 2H, CH2OH), 3.36 (t, J = 5.8 Hz, 2H,
CH2CH2OH), 3.10 (t, J = 5.8 Hz, 2H, CH2CH2OH), 3.08 (m, 4H, CH2OH) ppm; 13C NMR
(150 MHz, DMSO-d6) δ 164.24, 163.51 (C=O), 156.97, 132.64, 131.84, 130.85, 125.42, 124.74,
122.94, 114.01, 113.37, 42.02 ppm; HRMS (ESI) calcd. for C18H20N2O5 [M + H]+: 345.1445;
found: 345.1445.

3.2.7. Synthesis of (2-(2-Hydroxyethyl)-1,3-dioxo-2,3-dihydro-1H-
benzo[de]isoquinolin-6-yl)proline (5)

Compound 5 was prepared according to the procedure described for compound 3a,
starting from 2 (723 mg, 2.56 mmol), L-proline (1.47 g, 12.8 mmol) and 2-methoxyethanol
(10 mL). The pure product 5 was obtained as yellow solid (455 mg); Yield: 57.1%; M.p.
198.6–199.2 ◦C; Purity: 99.4%. 1H NMR (600 MHz, CD3OD) δ 9.48 (d, J = 8.8 Hz, 1H,
naphthalimide-H), 9.20 (d, J = 7.2 Hz, 1H, naphthalimide-H), 9.00 (d, J = 8.6 Hz, 1H,
naphthalimide-H), 8.39 (t, J = 7.9 Hz, 1H, naphthalimide-H), 7.63 (d, J = 8.9 Hz, 1H,
naphthalimide-H), 4.92 (t, J = 6.8 Hz, 2H, CH2CH2OH), 4.82 (bs, 1H, CH2CH2OH), 4.39 (t,
J = 6.8 Hz, 2H, CH2CH2OH), 4.06 (d, J = 7.2 Hz, 1H, CHCOOH), 3.81 (m, 2H, pyrrolidine-
H), 3.21 (m, 2H, pyrrolidine-H), 2.85 (m, 2H, pyrrolidine-H) ppm; HRMS (ESI) calcd. for
C19H18N2O5 [M + Na]+, 377.1108; found, 377.1108.
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3.2.8. Synthesis of 2-(2-Hydroxyethyl)-6-methoxy-1H-benzo[de]isoquinoline-1,3(2H)-
dione (6a)

Compound 6a was prepared according to the procedure described for compound
3a, starting from 2 (500 mg, 1.56 mmol), potassium carbonate (170 mg, 1.23 mmol) and
methanol (20 mL). The pure product 6a was obtained as yellow solid (276 mg); Yield:
65.4%; M.p. 189.3–189.9 ◦C; Purity: 99.3%. 1H NMR (600 MHz, CDCl3) δ 8.60 (d, J = 7.2 Hz,
1H, naphthalimide-H), 8.57 (d, J = 5.6 Hz, 1H, naphthalimide-H), 8.56 (d, J = 5.6 Hz,
1H, naphthalimide-H), 7.70 (t, J = 7.8 Hz, 1H, naphthalimide-H), 7.05 (d, J = 8.3 Hz, 1H,
naphthalimide-H), 4.45 (t, J = 5.2 Hz, 2H, CH2CH2OH), 4.14 (s, 3H, CH3), 3.98 (t, J = 5.2 Hz,
2H, CH2OH) ppm; 13C NMR (150 MHz, CDCl3) δ 160.64, 160.11 (C=O), 156.35, 129.09,
127.09, 124.70, 124.22, 121.22, 118.75, 117.36, 110.01, 51.49, 38.01 ppm; HRMS (ESI) calcd. for
C15H13NO4 [M + H]+, 272.0917; found, 272.0917.

3.2.9. Synthesis of 6-Ethoxy-2-(2-hydroxyethyl)-1H-benzo[de]isoquinoline-1,3(2H)-
dione (6b)

Compound 6b was prepared according to the procedure described for compound
3a, starting from 2 (500 mg, 1.56 mmol), potassium carbonate (170 mg, 1.23 mmol) and
ethanol (20 mL). The pure product 6b was obtained as yellow solid (268 mg); Yield: 60.3%;
M.p. 192.3–192.6 ◦C; Purity: 99.3%. 1H NMR (600 MHz, CDCl3) δ 8.60 (d, J = 7.2 Hz,
1H, naphthalimide-H), 8.57 (d, J = 5.6 Hz, 1H, naphthalimide-H), 8.56 (d, J = 5.6 Hz,
1H, naphthalimide-H), 7.70 (t, J = 7.8 Hz, 1H, naphthalimide-H), 7.05 (d, J = 8.3 Hz, 1H,
naphthalimide-H), 4.45 (t, J = 5.2 Hz, 2H, CH2CH2OH), 4.62 (m, 2H, CH2CH3), 3.98 (t,
J = 5.2 Hz, 2H, CH2OH), 1.55 (t, J = 7.2 Hz, 3H, CH2CH3) ppm; 13C NMR (150 MHz, CDCl3)
δ 164.64, 163.11 (C=O), 156.35, 129.09, 127.09, 124.70, 124.22, 121.22, 118.75, 117.36, 110.01,
51.49, 45.01, 23.34, 11.23 ppm; HRMS (ESI) calcd. for C16H15NO4 [M + H]+, 286.1074;
found, 286.1074.

3.2.10. Synthesis of
2-(2-Hydroxyethyl)-6-(2-methoxyethoxy)-1H-benzo[de]isoquinoline-1,3(2H)-dione (6c)

Compound 6c was prepared according to the procedure described for compound
3a, starting from 2 (500 mg, 1.56 mmol), potassium carbonate (170 mg, 1.23 mmol) and 2-
methoxyethanol (20 mL). The pure product 6c was obtained as yellow solid (272 mg); Yield:
55.4%; M.p. 215.4–215.9 ◦C; Purity: 99.7%. 1H NMR (600 MHz, CDCl3) δ 8.61 (d, J = 7.3 Hz,
1H, naphthalimide-H), 8.59 (d, J = 7.3 Hz, 1H, naphthalimide-H), 8.53 (d, J = 8.3 Hz,
1H, naphthalimide-H), 7.70 (t, J = 7.3 Hz, 1H, naphthalimide-H), 7.04 (d, J = 8.3 Hz, 1H,
naphthalimide-H), 4.45 (bs, 2H, CH2CH2OH), 4.42 (bs, 2H, CH2CH2OCH3), 3.97 (bs, 2H,
CH2OH), 3.94 (bs, 2H, CH2CH2OCH3), 3.52 (s, 3H, CH3) ppm; 13C NMR (150 MHz, CDCl3)
δ 165.33, 164.77 (C=O), 160.27, 133.69, 131.85, 129.11, 125.94, 123.53, 122.07, 114.89, 106.06,
70.66, 68.47, 61.99, 59.35, 42.75 ppm; HRMS (ESI) calcd. for C17H17NO5 [M + H]+, 316.1180;
found, 316.1179.

3.2.11. Synthesis of 2-(2-Hydroxyethyl)-6-((1-methyl-1H-imidazol-2-yl)thio)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (7a)

Compound 7a was prepared according to the procedure described for compound 3a,
starting from 2 (500 mg, 1.56 mmol), 2-mercapto-1-methylimidazole (214 mg, 1.87 mmol),
potassium carbonate (216 mg, 1.56 mmol) and N,N-dimethylformamide (7 mL). The pure
product 7a was obtained as yellow solid (356 mg); Yield: 64.7%; M.p. >250 ◦C; Pu-
rity: 99.9%. 1H NMR (600 MHz, DMSO-d6) δ 8.67 (d, J = 8.4 Hz, 1H, naphthalimide-
H), 8.55 (d, J = 7.3 Hz, 1H, naphthalimide-H), 8.31 (d, J = 7.9 Hz, 1H, naphthalimide-H),
7.96 (t, J = 7.9 Hz, 1H, naphthalimide-H), 7.62 (bs, 1H, imidazole-H), 7.26 (bs, 1H, imidazole-
H), 7.01 (d, J = 7.9 Hz, 1H, naphthalimide-H), 4.79 (bs, 1H, OH), 4.13 (t, J = 6.5 Hz, 2H,
CH2CH2OH), 3.65 (s, 3H CH3), 3.61 (t, J = 6.4 Hz, 2H, CH2OH) ppm; 13C NMR (150 MHz,
DMSO-d6) δ 163.67, 163.53 (C=O), 142.14, 133.60, 131.70, 131.05, 131.00, 129.93, 128.67,
128.34, 128.24, 126.65, 125.20, 123.43, 120.82, 58.25, 42.34, 34.04 ppm; HRMS (ESI) calcd. for
C18H15N3O3S [M + H]+, 354.0907; found, 354.0907.
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3.2.12. Synthesis of 2-(2-Hydroxyethyl)-6-((1-methyl-1H-tetrazol-5-yl)thio)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (7b)

Compound 7b was prepared according to the procedure described for compound 3a,
starting from 2 (500 mg, 1.56 mmol), 1-methyl-1H-tetrazole-5-thiol (217 mg, 1.87 mmol),
potassium carbonate (170 mg, 1.23 mmol) and N,N-dimethylformamide (10 mL). The
pure product 7b was obtained as yellow solid (278 mg); Yield: 50.3%; M.p. >250 ◦C;
Purity: 99.9%. 1H NMR (600 MHz, DMSO-d6) δ 8.66 (d, J = 8.4 Hz, 1H, naphthalimide-H),
8.53 (d, J = 7.2 Hz, 1H, naphthalimide-H), 8.40 (d, J = 7.7 Hz, 1H, naphthalimide-H), 7.96 (t,
J = 7.9 Hz, 1H, naphthalimide-H), 7.90 (d, J = 7.7 Hz, 1H, naphthalimide-H), 4.80 (bs, 1H,
OH), 4.14 (t, J = 6.3 Hz, 2H, CH2CH2OH), 4.12 (s, 3H, CH3), 3.63 (t, J = 6.3 Hz, 2H, CH2OH)
ppm; 13C NMR (150 MHz, DMSO-d6) δ 163.53, 163.34 (C=O), 151.25, 134.11, 132.48, 131.74,
131.03, 130.97, 130.73, 128.54, 123.77, 123.52, 58.23, 42.46, 34.92 ppm; HRMS (ESI) calcd. for
C16H13N5O3S [M + H]+, 356.0812; found, 356.0810.

3.2.13. Synthesis of 6-((1H-1,2,4-Triazol-5-yl)thio)-2-(2-hydroxyethyl)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (7c)

Compound 7c was prepared according to the procedure described for compound
3a, starting from 2 (500 mg, 1.56 mmol), 1H-1,2,4-triazole-3-thiol (190 mg, 1.87 mmol),
potassium carbonate (170 mg, 1.23 mmol) and N,N-dimethylformamide (10 mL). The
pure product 7c was obtained as yellow solid (246 mg); Yield: 46.4%; M.p. >250 ◦C;
Purity: 99.9%. 1H NMR (600 MHz, DMSO-d6) δ 14.59 (s, 1H, NH), 8.80 (s, 1H, triazole-
H), 8.62 (d, J = 8.0 Hz, 1H, naphthalimide-H), 8.54 (d, J = 6.4 Hz, 1H, naphthalimide-H),
8.36 (d, J = 6.6 Hz, 1H, naphthalimide-H), 7.93 (t, J = 8.2 Hz, 1H, naphthalimide-H), 7.66 (d,
J = 6.5 Hz, 1H, naphthalimide-H), 4.80 (bs, 1H, OH), 4.13 (t, J = 6.8 Hz, 2H, CH2CH2OH),
3.63 (t, J = 8.1 Hz, 2H, CH2OH) ppm; 13C NMR (150 MHz, DMSO-d6) δ 163.67, 163.53 (C=O),
146.55, 131.55, 130.74, 130.55, 128.72, 128.31, 128.23, 123.39, 58.26, 42.38 ppm; HRMS (ESI)
calcd. for C16H12N4O3S [M + H]+, 341.0703; found, 341.0700.

3.2.14. Synthesis of 2-(2-Hydroxyethyl)-6-((5-methyl-1,3,4-thiadiazol-2-yl)thio)-1H-benzo
[de]isoquinoline-1,3(2H)- dione (7d)

Compound 7d was prepared according to the procedure described for compound 3a,
starting from 2 (500 mg, 1.56 mmol), 5-methyl-1,3,4-thiadiazole-2-thiol (247 mg, 1.87 mmol),
potassium carbonate (170 mg, 1.23 mmol) and N,N-dimethylformamide (10 mL). The
pure product 7d was obtained as yellow solid (326 mg); Yield: 56.4%; M.p. >250 ◦C;
Purity: 99.9%. 1H NMR (600 MHz, CDCl3) δ 8.74 (d, J = 8.5 Hz, 1H, naphthalimide-
H), 8.67 (d, J = 7.2 Hz, 1H, naphthalimide-H), 8.56 (d, J = 7.6 Hz, 1H, naphthalimide-H),
8.07 (d, J = 7.6 Hz, 1H, naphthalimide-H), 7.85 (t, J = 7.9 Hz, 1H, naphthalimide-H), 4.45 (t,
J = 5.3 Hz, 2H, CH2CH2OH), 3.98 (t, J = 5.3 Hz, 2H, CH2OH), 2.70 (s, 3H, CH3) ppm;
13C NMR (150 MHz, CDCl3) δ 167.70, 164.40, 164.19, 163.33 (C=O), 136.76, 133.14, 132.27,
131.62, 131.42, 130.95, 128.97, 128.32, 123.90, 123.18, 61.50, 42.88, 15.80 ppm; HRMS (ESI)
calcd. for C17H13N3O3S2 [M + H]+, 372.0471; found, 372.0470.

3.2.15. Synthesis of 6-(Benzo[d]thiazol-2-ylthio)-2-(2-hydroxyethyl)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (7e)

Compound 7e was prepared according to the procedure described for compound
3a, starting from 2 (300 mg, 0.94 mmol), 2-mercaptobenzothiazole (187 mg, 1.12 mmol),
potassium carbonate (130 mg, 0.94 mmol) and N,N-dimethylformamide (10 mL). The pure
product 7e was obtained as yellow solid (241 mg); Yield: 63.2%; M.p. >250 ◦C; Purity:
98.8%. 1H NMR (600 MHz, DMSO-d6) δ 8.69 (d, J = 14.2 Hz, 1H, naphthalimide-H), 8.53 (m,
2H, benzothiazole-H), 8.37 (d, J = 15.1 Hz, 1H, naphthalimide-H), 7.94 (d, J = 15.1 Hz, 1H,
naphthalimide-H), 7.87 (m, 2H, benzothiazole-H), 7.45 (d, J = 7.2 Hz, 1H, naphthalimide-
H), 7.34 (d, J = 7.1 Hz, 1H, naphthalimide-H), 4.84 (bs, 1H, OH), 4.16 (t, J = 6.4 Hz, 2H,
CH2CH2OH), 3.67 (t, J = 6.2 Hz, 2H, CH2OH) ppm; 13C NMR (150 MHz, DMSO-d6) δ 165.97,
163.51, 163.33 (C=O), 153.41, 136.12, 135.68, 134.33, 132.23, 131.84, 131.41, 130.76, 129.34,
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128.75, 127.11, 125.47, 123.67, 122.33, 122.23, 58.25, 42.55 ppm; HRMS (ESI) calcd. for
C21H14N2O3S2 [M + H]+, 407.0519; found, 407.0514.

3.2.16. Synthesis of 6-((1H-Benzo[d]imidazol-2-yl)thio)-2-(2-hydroxyethyl)-1H-benzo
[de]isoquinoline-1,3(2H)-dione (7f)

Compound 7f was prepared according to the procedure described for compound
3a, starting from 2 (500 mg, 1.56 mmol), 2-mercaptobenzimidazole (281 mg, 1.87 mmol),
potassium carbonate (170 mg, 1.23 mmol) and N,N-dimethylformamide (10 mL). The pure
product 7f was obtained as yellow solid (275 mg); Yield: 45.3%; M.p. >250 ◦C; Purity: 99.9%.
1H NMR (600 MHz, DMSO-d6) δ 13.04 (s, 1H, NH), 8.66 (d, J = 8.4 Hz, 1H, naphthalimide-H),
8.55 (d, J = 7.2 Hz, 1H, naphthalimide-H), 8.42 (d, J = 7.7 Hz, 1H, naphthalimide-H), 7.94 (t,
J = 7.9 Hz, 1H, naphthalimide-H), 7.86 (d, J = 7.7 Hz, 1H, naphthalimide-H), 7.51 (m, 2H,
benzimidazole-H), 7.21 (m, 2H, benzimidazole-H), 4.83 (bs, 1H, OH), 4.16 (t, J = 6.4 Hz, 2H,
CH2CH2OH), 3.64 (t, J = 6.6 Hz, 2H, CH2OH) ppm; 13C NMR (150 MHz, DMSO-d6) δ 163.64,
163.49 (C=O), 144.99, 137.65, 131.64, 131.17, 130.92, 130.72, 128.57, 128.52, 123.44, 122.69,
58.26, 42.40 ppm; HRMS (ESI) calcd. for C21H15N3O3S [M + H]+, 390.0907; found, 390.0906.

3.2.17. Synthesis of
2-(2-Hydroxyethyl)-6-(pyrimidin-2-ylthio)-1H-Benzo[de]isoquinoline-1,3(2H)-dione (8a)

Compound 8a was prepared according to the procedure described for compound 3a,
starting from 2 (300 mg, 0.94 mmol), pyrimidine-2-thiol (126 mg, 1.12 mmol), potassium
carbonate (130 mg, 0.94 mmol) and N,N-dimethylformamide (10 mL). The pure product
8a was obtained as yellow solid (143 mg); Yield: 43.3%; M.p. >250 ◦C; Purity: 99.9%.
1H NMR (600 MHz, CDCl3) δ 8.67 (d, J = 8.4 Hz, 1H, naphthalimide-H), 8.64 (d, J = 7.2 Hz,
1H, naphthalimide-H), 8.62 (d, J = 7.6 Hz, 1H, naphthalimide-H), 8.41 (d, J = 4.8 Hz,
2H, pyrimidine-H), 8.16 (d, J = 7.5 Hz, 1H, naphthalimide-H), 7.75 (t, J = 7.9 Hz, 1H,
naphthalimide-H), 7.00 (t, J = 4.8 Hz, 1H, pyrimidine-H), 4.47 (t, J = 5.3 Hz, 2H, CH2CH2OH),
3.99 (t, J = 5.3 Hz, 2H, CH2OH) ppm; 13C NMR (150 MHz, CDCl3) δ 171.44, 164.74, 164.57
(C=O), 135.69, 135.42, 133.33, 132.59, 131.87, 130.96, 128.90, 127.71, 123.87, 123.00, 117.62,
61.62, 42.84 ppm; HRMS (ESI) calcd. for C18H13N3O3S [M + H]+, 352.0750; found, 352.0755.

3.2.18. Synthesis of 2-(2-Hydroxyethyl)-6-((4-methylpyrimidin-2-yl)thio)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (8b)

Compound 8b was prepared according to the procedure described for compound
3a, starting from 2 (300 mg, 0.94 mmol), 4-methylpyrimidine-2-thiol (142 mg, 1.12 mmol),
potassium carbonate (130 mg, 0.94 mmol) and N,N-dimethylformamide (10 mL). The
pure product 8b was obtained as yellow solid (190 mg); Yield: 55.3%; M.p. >250 ◦C;
Purity: 99.5%. 1H NMR (600 MHz, CDCl3) δ 8.65 (d, J = 8.4 Hz, 1H, naphthalimide-H),
8.62 (d, J = 7.2 Hz, 1H, naphthalimide-H), 8.59 (d, J = 7.5 Hz, 1H, naphthalimide-H),
8.19 (d, J = 5.0 Hz, 1H, naphthalimide-H), 8.14 (d, J = 7.5 Hz, 1H, pyrimidine-H), 7.73 (t,
J = 7.9 Hz, 1H, naphthalimide-H), 6.85 (d, J = 5.0 Hz, 1H, pyrimidine-H), 4.46 (t, J = 5.3 Hz,
2H, CH2CH2OH), 4.00 (t, J = 5.3 Hz, 2H, CH2OH), 2.39 (s, 3H, CH3) ppm; 13C NMR
(150 MHz, CDCl3) δ 170.64, 168.35, 164.75, 164.60, 157.22, 135.86, 135.49, 133.24, 132.65,
131.78, 130.87, 128.80, 127.53, 123.59, 122.90, 117.36, 61.56, 42.83, 24.00 ppm; HRMS (ESI)
calcd. for C19H15N3O3S [M + H]+, 366.0907; found, 366.0916.

3.2.19. Synthesis of 6-((4,6-Dimethylpyrimidin-2-yl)thio)-2-(2-hydroxyethyl)-1H-benzo[de]
isoquinoline-1,3(2H)-dione (8c)

Compound 8c was prepared according to the procedure described for compound 3a,
starting from 2 (300 mg, 0.94 mmol), 4,6-dimethylpyrimidine-2-thiol (157 mg, 1.12 mmol),
potassium carbonate (130 mg, 0.94 mmol) and N,N-dimethylformamide (10 mL). The pure
product 8c was obtained as yellow solid (183 mg); Yield: 51.3%; M.p. >250 ◦C; Purity: 99.5%.
1H NMR (600 MHz, CDCl3) δ 8.65 (d, J = 8.5 Hz, 1H, naphthalimide-H), 8.61 (d, J = 7.2 Hz,
1H, naphthalimide-H), 8.57 (d, J = 7.6 Hz, 1H, naphthalimide-H), 8.13 (d, J = 7.6 Hz, 1H,
naphthalimide-H), 7.72 (t, J = 7.9 Hz, 1H, naphthalimide-H), 6.73 (s, 1H, pyrimidine-H),
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4.47 (t, J = 5.3 Hz, 2H, CH2CH2OH), 4.01 (t, J = 5.3 Hz, 2H, CH2OH), 2.26 (s, 6H, CH3) ppm;
13C NMR (150 MHz, CDCl3) δ 169.74, 167.76, 164.84, 164.71, 136.52, 135.17, 133.12, 132.72,
131.69, 130.78, 128.72, 127.29, 123.20, 122.79, 116.93, 61.56, 42.84, 23.72 ppm; HRMS (ESI)
calcd. for C20H17N3O3S [M + H]+, 380.1063; found, 380.1065.

3.2.20. Synthesis of 6-((4-Hydroxy-6-methylpyrimidin-2-yl)thio)-2-(2-hydroxyethyl)-1H-
benzo[de]isoquinoline-1,3(2H)-dione (8d)

Compound 8d was prepared according to the procedure described for compound
3a, starting from 2 (300 mg, 0.94 mmol), 2-mercapto-6-methylpyrimidin-4-ol (160 mg,
1.12 mmol), potassium carbonate (130 mg, 0.94 mmol) and N,N-dimethylformamide
(10 mL). The pure product 8d was obtained as yellow solid (166 mg); Yield: 46.3%;
M.p. >250 ◦C; Purity: 99.5%. 1H NMR (600 MHz, DMSO-d6) δ 12.94 (s, 1H, pyrimidine-
OH), 8.57 (d, J = 7.7 Hz, 1H, naphthalimide-H), 8.51 (d, J = 7.2 Hz, 1H, naphthalimide-H),
8.11 (d, J = 8.4 Hz, 1H, naphthalimide-H), 7.85 (d, J = 8.0 Hz, 1H, naphthalimide-H), 7.82 (d,
J = 7.7 Hz, 1H, naphthalimide-H), 6.07 (s, 1H, pyrimidine-H), 4.84 (bs, 1H, CH2CH2OH),
4.18 (t, J = 6.4 Hz, 2H, CH2CH2OH), 3.65 (t, J = 6.2 Hz, 2H, CH2OH), 2.26 (s, 3H, CH3)
ppm; 13C NMR (150 MHz, DMSO-d6) δ 177.80, 163.85, 163.52, 161.12, 153.96, 142.08, 131.25,
131.16, 129.38, 128.87, 128.64, 128.39, 123.44, 123.08, 103.94, 58.33, 42.46, 18.79 ppm; HRMS
(ESI) calcd. for C19H15N3O4S [M + H]+, 382.0856; found, 382.0853.

3.3. Biological Assay
3.3.1. Antifungal Assay

The newly synthesized compounds 2, 3a–b, 4a–c, 5, 6a–c, 7a–f and 8a–d were eval-
uated for their antifungal activities against Candida albicans (C. albicans), Candida albi-
cans ATCC 90023 (C. albicans 90023), Candida tropicalis (C. tropicalis), Aspergillus fumigatus
(A. fumigatus), Candida parapsilosis ATCC 22019 (C. parapsilosis 22019). A spore suspension
in sterile distilled water was prepared from one day old culture of the fungi growing on
Sabouraud Agar (SA) media. The final spore concentration was 1–5 × 103 spore mL−1. The
tested compounds and reference fluconazole were dissolved in DMSO to prepare the stock
solutions, and diluted in sterile RPM1 1640 medium (Neuronbc Laboraton Technology C1.,
Ltd., Beijing, China) to get eleven wanted concentrations of each tested compound. These
dilutions were inoculated and incubated at 37 ◦C for 24 h.

3.3.2. UV Absorption Spectra of Fluorophores with DNA

UV spectra were recorded at room temperature on a TU-2450 spectrophotometer (Puxi
Analytic Instrument Ltd. of Beijing, China) equipped with 1.0 cm quartz cells. The stock
solutions of fluorophores were prepared in DMSO. Tris-HCl buffer solution (pH = 7.4)
was prepared by mixing and diluting Tris (tris(hydroxymethyl)aminomethane) solution
with HCl solution. Tris and HCl were analytical purity. Sample masses were weighed
on a microbalance with a resolution of 0.1 mg. All other chemicals and solvents were
commercially available, and were used without further purification.

3.3.3. Competitive Reaction of Compound 7f and AO or DAPI with DNA

The fluorescence emission spectra of compound 7f with AO-DNA and DAPI-DNA
were recorded. The stock solution of compound 7f was prepared in DMSO, and acri-
dine orange (AO) and 4′,6-diamidino-2-phenylindole (DAPI) were prepared in distilled
water. Tris-HCl buffer solution (pH = 7.4) was prepared by mixing and diluting Tris
(tris(hydroxymethyl)aminomethane) solution with HCl solution. Tris and HCl were analyt-
ical purity. All other chemicals and solvents were commercially available, and were used
without further purification.

3.3.4. Measurement of Intracellular ROS Production

Intracellular ROS was measured using standard 2,7-dichlorofluoroscein diacetate
(DCFH-DA) assay [57,58]. Then, 106 CFU/mL of Candida tropicalis was treated with increas-
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ing concentrations of compound 7f for 6 h at 37 ◦C and 200 rpm. Following treatment, both
control and treated cells were washed with PBS and incubated with 100 µM DCFH-DA
probe for 30 min in dark at 37 ◦C. The green fluorescence originating from the oxidative
cleavage of DCFH-DA to DCF was measured in a microplate reader with an excitation wave-
length of 485 nm and emission wavelength of 528 nm. The increase in intracellular ROS
production in cells treated with compound 7f in comparison to control cells was plotted.

3.3.5. Measurement of RNIs by Griess’s Reaction

RNIs was measured using a spectrophotometric analysis of the total nitrite performed
by using Griess’s reagent [59,60]. The Candida tropicalis suspension (100 µL) were incubated
with 100 µL of compound 7f (2 × MIC, 8 × MIC) at different times (1, 2, 3, 4, 5 and
6 h) at 37 ◦C. Then, 50 µL of 2% sulfanilamide in 5% (v/v) HCl and 50 µL of 0.1% N-(1-
naphthyl)ethylenediamine dihydrochloride aqueous solution were added. The formation
of the azo dye was measured 15 min later by spectrophotometry at 540 nm. The OD was
directly proportional to the nitrite content of the standard solution. Results were expressed
respect to control without compound 7f.

3.3.6. Measurement of MDA

Malondialdehyde (MDA) content of cell-free extract was determined using microplate
reader. Briefly, cell-free extract was mixed with TBA/TCA/HCl (15%, 0.37%) at a reagent/sample
ratio of 2:1 (v/v), placed in a boiling water bath for 15 min, cooled to room temperature, and
centrifuged at 1000× g for 10 min at room temperature. The absorbance of the solution was
read at 535 nm against the blank using microplate reader.

3.3.7. Measurement of Intracellular Glutathione (GSH) Activity

The activity of intracellular GSH was determined using standard Ellman’s assay [61].
Then, 106 CFU/mL of Candida tropicalis was treated with increasing concentrations of
compound 7f for 6 h at 37 ◦C and 200 rpm. Following treatment, both control and treated
cells were centrifuged at 5000 rpm for 5 min, washed with PBS, and lysed. The lysed
cells were further centrifuged, and the clear supernatant was collected. The supernatant
was mixed with 50 mM Tris-HCl and 100 mM 5,5-dithiobis(2-nitrobenzoic acid) (DTNB)
and incubated for 30 min in dark at 37 ◦C. The absorbance of the resulting solution was
measured at 412 nm using microplate reader.

3.3.8. Measurement of Alamar Blue Assay

Following 48 h of C. tropicalis growth, the media were replaced with fresh media
containing increasing concentrations of compound 7f (MIC, 2 ×MIC, 4 ×MIC, 6 ×MIC
and 8 × MIC). The strain was treated with compound 7f for 24 h at 37 ◦C in a moist
environment under static conditions. Following 24 h of treatment, the media were removed
from the wells, and the strain was washed twice with PBS carefully to remove planktonic
cells. Then, 100 µL of LB broth containing 10 µL of 5 µg/mL resazurin was added to the
wells, and the plate was incubated for 45 min at 37 ◦C. Then, took photos for these wells,
and fluorescence was measured at 571 nm excitation and 590 nm emission.

3.3.9. Drug Resistance Development Assay

The strain of C. tropicalis was exposed to sub-MICs of compound 7f for sustained
passages, which determined every 24 h after propagation of C. tropicalis cultures and then
the MIC of 7f were determined against each passage of the strain. To make comparative
analysis, fluconazole was used as the control experiment. The experiment was sustained
for 16 passages.

3.3.10. Hemolysis Assay

After washing and resuspending in PBS, 2% of human red blood cell was added to
a 96-well plate with 100 µL per well. Then, the same volume of compound 7f in various
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concentrations was added. 0.5% Triton X-100 (v:v) and PBS were used as positive control and
negative control, respectively. After co-incubation at room temperature for one hour, the plate
was centrifuged at 1500 rpm for 10 min. The absorbance of 100 µL of the supernatant was mea-
sured at 450 nm. The experiments were performed in triplicate, and the hemolysis percentage
was calculated as follows: Hemolysis (%) = (A7f − APBS)/(ATriton − APBS) × 100%.

3.3.11. In Vitro Cytotoxicity

The cytotoxicity assays were determined with LO2 cells under normal training conditions.
LO2 cells were inoculated into a sterile 96-well plates with a density of 4 × 10−4 cells·mL−1.
Compound 7f was put in DMSO and diluted with culture media. After 24 h, 7f were
put in the cultured LO2 cells for 24 h. Cell viability was determined by measuring the
absorbance of the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenpyltetra-zolium bromide (MTT)
assay at 570 nm. Each test was conducted in triplicate.

3.3.12. Membrane Depolarization Assay

Candida tropicalis strain in their mid log phase (OD600 = 0.4–0.5) were washed with
a buffer solution (5 mM HEPES buffer, 5 mM glucose, pH 7.2) and redispersed in the
same buffer to an OD600 of 0.1. The redispersed cells were then incubated with 0.4 µM
of 3,3′-dipropylthiadicarbocyanine iodide (diSC35) dye for 1 h at 37 ◦C, following which
100 mM KCl was added to the suspensions. After incubation with dye, the Candida tropicalis
strain was treated with compound 7f at MIC concentration, and the fluorescence of the
treated cells was monitored periodically over a period of 1 h in fluorescence photometer
set to an excitation wavelength of 622 nm and emission wavelength of 670 nm. Increase in
fluorescence with time indicated membrane depolarization.

3.3.13. Protein Leakage Assay

Candida tropicalis (106 CFU/mL) was treated with increasing concentrations of com-
pound 7f for 6 h at 37 ◦C and 200 rpm. Following treatment, the cell was pelleted down
at 5000 rpm for 5 min, and the cell-free supernatant was collected. The concentration of
leaked proteins in the supernatant was measured using standard Bradford assay.

3.3.14. Measurement of Metabolic Activity

The metabolic activity of C. tropicalis was measured using Alamar blue assay which is
based on the ability of cells to convert a purple nonfluorescent dye resazurin to its pink
fluorescent reduced form resofurin. Then, 106 CFU/mL of C. tropicalis was treated with
increasing concentrations of compound 7f for 6 h at 37 ◦C and 200 rpm. Both control
and treated cells were incubated with 25 µL of 50 µg/mL resazurin solution for 1 h at
37 ◦C. The metabolic conversion of resazurin to pink colored resofurin was quantified
spectrophotometrically by measuring absorbance at 571 nm.

3.3.15. Molecular Docking

The structure of cytochrome P450 reductase (CPR) employed in the docking calcu-
lations was obtained using RCSB Protein Data Bank (PDB ID: 6T1U). The structures of
compound 7f were drawn with ChemDraw 19.0. Docking analyses were performed with
the Sybyl-X 2.0 and pymol program. The gird size was set to be 45 × 45 × 45 and the grid
point spacing was set at default value 0.375 Å. The Lamarkian genetic algorithm (LGA)
was applied for the conformational search.

4. Conclusions

In conclusion, a desirable family of hydroxyethyl naphthalimides with synergistic
chemical and dynamic antifungal treatment were favourably discovered. These prepared
compounds showed significant antifungal potency towards some tested fungi including
A. fumigatus, C. tropicalis and C. parapsilosis 22019. Especially, thioether benzimidazole 7f
with excellent DNA binding ability gave better anti-C. tropicalis efficacy than fluconazole.
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Moreover, 7f presented low cytotoxicity, safe hemolysis level and no obvious resistance.
The strong lipase affinity of 7f facilitated its permeation into cell membrane to cause
membrane dysfunction. The studies of biological mechanisms directed by ROS and RNIs
indicated prominent enhancement of intracellular oxidative damage with membrane lipid
peroxidation and oxidization of GSH into GSSG, which destructed the antioxidant defence
system of C. tropicalis and caused cell death. Under the collective participation of chemical
and dynamic antifungal treatment in the killing of C. tropicalis, the fact that disruption
of biological function for DNA and CPR, metabolic inactivation was displayed. By ex-
tending on this base, a battery of chemical biological studies implied that hydroxyethyl
naphthalimides should be hopeful to be further exploited as specific antifungal drugs.
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