1,877 research outputs found
High quality GaMnAs films grown with As dimers
We demonstrate that GaMnAs films grown with As2 have excellent structural,
electrical and magnetic properties, comparable or better than similar films
grown with As4. Using As2, a Curie temperature of 112K has been achieved, which
is slightly higher than the best reported to date. More significantly, films
showing metallic conduction have been obtained over a much wider range of Mn
concentrations (from 1.5% to 8%) than has been reported for films grown with
As4. The improved properties of the films grown with As2 are related to the
lower concentration of antisite defects at the low growth temperatures
employed.Comment: 8 pages, accepted for publication in J. Crystal Growt
The evolution of cosmic string loops in Kerr-de Sitter spacetimes
The equation of cosmic string loops in Kerr-de Sitter spacetimes is derived.
Having solved the equation numerically, we find that the loops can expand and
exist except for too small ones.Comment: 8 page
An assessment of pulse transit time for detecting heavy blood loss during surgical operation
Copyright @ Wang et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.The main contribution of this paper is the use of non-invasive measurements such as electrocardiogram (ECG) and photoplethysmographic (PPG) pulse oximetry waveforms to develop a new physiological signal analysis technique for detecting blood loss during surgical operation. Urological surgery cases were considered as the control group due to its generality, and cardiac surgery as experimental group since it involves blood loss and water supply. Results show that the control group has the tendency of a reduction of the pulse transient time (PTT), and this indicates an increment in the blood flow velocity changes from slow to fast. While for the experimental group, the PTT indicates high values during blood loss, and low values during water supply. Statistical analysis shows considerable differences (i.e., P <0.05) between both groups leading to the conclusion that PTT could be a good indicator for monitoring patients' blood loss during a surgical operation.The National Science Council (NSC) of Taiwan and the Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan
Charmless hadronic decays and new physics effects in the general two-Higgs doublet models
Based on the low-energy effective Hamiltonian with the generalized
factorization, we calculate the new physics contributions to the branching
ratios of the two-body charmless hadronic decays of and mesons
induced by the new gluonic and electroweak charged-Higgs penguin diagrams in
the general two-Higgs doublet models (models I, II and III). Within the
considered parameter space, we find that: (a) the new physics effects from new
gluonic penguin diagrams strongly dominate over those from the new -
and - penguin diagrams; (b) in models I and II, new physics contributions
to most studied B meson decay channels are rather small in size: from -15% to
20%; (c) in model III, however, the new physics enhancements to the
penguin-dominated decay modes can be significant, , and
therefore are measurable in forthcoming high precision B experiments; (d) the
new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in
model III, , and hence provide a simple and plausible new
physics interpretation for the observed unexpectedly large B \to K \etap
decay rates; (e) the theoretical predictions for and
in model III are still consistent with the data
within errors; (f) the significant new physics enhancements to the
branching ratios of and decays are helpful to improve the
agreement between the data and the theoretical predictions; (g) the theoretical
predictions of in the 2HDM's are generally
consistent with experimental measurements and upper limits ()Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections,
final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4
Structural and dynamical properties of superfluid helium: a density functional approach
We present a novel density functional for liquid 4He, properly accounting for
the static response function and the phonon-roton dispersion in the uniform
liquid. The functional is used to study both structural and dynamical
properties of superfluid helium in various geometries. The equilibrium
properties of the free surface, droplets and films at zero temperature are
calculated. Our predictions agree closely to the results of ab initio Monte
Carlo calculations, when available. The introduction of a phenomenological
velocity dependent interaction, which accounts for backflow effects, is
discussed. The spectrum of the elementary excitations of the free surface and
films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]
Hsp70 in mitochondrial biogenesis
The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix
Cubic and hexagonal InGaAsN dilute arsenides by unintentional homogeneous incorporation of As into InGaN
Arsenic alloying is observed for epitaxial layers nominally intended to be In0.75Ga0.25N. Voids form beneath their interfaces with GaAs substrates, acting as sources of Ga + As out-diffusion into the growing epilayers. As a result, heteroepitaxial single-phase quaternary InxGa1-xAsyN1-y, films are formed with x similar to 0.55 and 0.05 menor que y menor que 0,10. While an undoped epilayer retains the wurtzite structure, a Mn-doped sample showed randomly spaced dopant segregations, which, together with a slightly higher As concentration, led to a transformation from the hexagonal to the twinned cubic phase
Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil.
The São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that orgThe São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that organic fertilization can improve soil quality, we compared the effects of conventional and organic soil management on microbial activity and mycorrhization of seedless grape crops. We measured glomerospores number, most probable number (MPN) of propagules, richness of arbuscular mycorrhizal fungi (AMF) species, AMF root colonization, EE-BRSP production, carbon microbial biomass (C-MB), microbial respiration, fluorescein diacetate hydrolytic activity (FDA) and metabolic coefficient (qCO2). The organic management led to an increase in all variables with the exception of EE-BRSP and qCO2. Mycorrhizal colonization increased from 4.7% in conventional crops to 15.9% in organic crops. Spore number ranged from 4.1 to 12.4 per 50 g-1 soil in both management systems. The most probable number of AMF propagules increased from 79 cm-3 soil in the conventional system to 110 cm-3 soil in the organic system. Microbial carbon, CO2 emission, and FDA activity were increased by 100 to 200% in the organic crop. Thirteen species of AMF were identified, the majority in the organic cultivation system. Acaulospora excavata, Entrophospora infrequens, Glomus sp.3 and Scutellospora sp. were found only in the organically managed crop. S. gregaria was found only in the conventional crop. Organically managed vineyards increased mycorrhization and general soil microbial activity
New Physics and CP Violation in Hyperon Nonleptonic Decays
The sum of the CP-violating asymmetries A(Lambda_-^0) and A(Xi_-^-) in
hyperon nonleptonic decays is presently being measured by the E871 experiment.
We evaluate contributions to the asymmetries induced by chromomagnetic-penguin
operators, whose coefficients can be enhanced in certain models of new physics.
Incorporating recent information on the strong phases in Xi->Lambda pi decay,
we show that new-physics contributions to the two asymmetries can be
comparable. We explore how the upcoming results of E871 may constrain the
coefficients of the operators. We find that its preliminary measurement is
already better than the epsilon parameter of K-Kbar mixing in bounding the
parity-conserving contributions.Comment: 12 pages, 2 figure
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
- …
