9,009 research outputs found
A comparison of the long-term health-related quality of life of handicap of stroke patients in Mainland China and Hong Kong
Purpose: To compare health related quality of life (HRQOL) and handicap of stroke survivors in Hong Kong (HK) and Chengdu (CD) in Mainland China.
Method: Fifty-four pairs of first ever stroke patients in CD and in HK matched by age, sex and Modified Barthel Index (MBI) were interviewed using a structured questionnaire at 16–36 months after stroke. HRQOL and handicap outcomes were evaluated by the Chinese version of the Short-Form Health Survey (SF-36) and London Handicap Scale (LHS) respectively.
Results: Compared to stroke patients in CD, HK subjects reported significantly greater handicap, especially in the occupation domain. HK subjects also had significantly lower HRQOL Z scores in domains of role limitations due to emotional or physical problems, and bodily pain. CD subjects had more social support, but had more difficulties in meeting medical costs, and were less likely to have regular
medical follow-up and dysphagia symptom. After adjusting for social and health related factors, the site differences in handicap and the role limitation (physical) domain of SF36 became insignificant.
Conclusions: CD stroke survivors had better scores in HRQOL and fewer handicaps than their counterparts in HK, because of social and health related factors.published_or_final_versio
Flavor SU(3) symmetry and QCD factorization in and decays
Using flavor SU(3) symmetry, we perform a model-independent analysis of
charmless decays. All the relevant
topological diagrams, including the presumably subleading diagrams, such as the
QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation
ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be
important in understanding the data for penguin-dominated decay modes. In this
work we make efforts to bridge the (model-independent but less quantitative)
topological diagram or flavor SU(3) approach and the (quantitative but somewhat
model-dependent) QCD factorization (QCDF) approach in these decays, by
explicitly showing how to translate each flavor SU(3) amplitude into the
corresponding terms in the QCDF framework. After estimating each flavor SU(3)
amplitude numerically using QCDF, we discuss various physical consequences,
including SU(3) breaking effects and some useful SU(3) relations among decay
amplitudes of and .Comment: 47 pages, 3 figures, 28 table
Dynamical Axion Field in Topological Magnetic Insulators
Axions are very light, very weakly interacting particles postulated more than
30 years ago in the context of the Standard Model of particle physics. Their
existence could explain the missing dark matter of the universe. However,
despite intensive searches, they have yet to be detected. In this work, we show
that magnetic fluctuations of topological insulators couple to the
electromagnetic fields exactly like the axions, and propose several experiments
to detect this dynamical axion field. In particular, we show that the axion
coupling enables a nonlinear modulation of the electromagnetic field, leading
to attenuated total reflection. We propose a novel optical modulators device
based on this principle.Comment: 5 pages, 3 figure
Electronic Properties of Boron and Nitrogen doped graphene: A first principles study
Effect of doping of graphene either by Boron (B), Nitrogen (N) or co-doped by
B and N is studied using density functional theory. Our extensive band
structure and density of states calculations indicate that upon doping by N
(electron doping), the Dirac point in the graphene band structure shifts below
the Fermi level and an energy gap appears at the high symmetric K-point. On the
other hand, by B (hole doping), the Dirac point shifts above the Fermi level
and a gap appears. Upon co-doping of graphene by B and N, the energy gap
between valence and conduction bands appears at Fermi level and the system
behaves as narrow gap semiconductor. Obtained results are found to be in well
agreement with available experimental findings.Comment: 11 pages, 4 figures, 1 table, submitted to J. Nanopart. Re
Battery management system and control strategy for hybrid and electric vehicle
Author name used in this publication: K. W. E. ChengAuthor name used in this publication: K. DingAuthor name used in this publication: W. TingVersion of RecordPublishe
Integrable models: from dynamical solutions to string theory
We review the status of integrable models from the point of view of their
dynamics and integrability conditions. Some integrable models are discussed in
detail. We comment on the use it is made of them in string theory. We also
discuss the Bethe Ansatz solution of the SO(6) symmetric Hamiltonian with SO(6)
boundary.
This work is especially prepared for the seventieth anniversaries of
Andr\'{e} Swieca (in memoriam) and Roland K\"{o}berle.Comment: 24 pages, to appear in Brazilian Journal of Physic
A Method to Improve the Early Stages of the Robotic Process Automation Lifecycle
The robotic automation of processes is of much interest to
organizations. A common use case is to automate the repetitive manual
tasks (or processes) that are currently done by back-office staff
through some information system (IS). The lifecycle of any Robotic Process
Automation (RPA) project starts with the analysis of the process
to automate. This is a very time-consuming phase, which in practical
settings often relies on the study of process documentation. Such documentation
is typically incomplete or inaccurate, e.g., some documented
cases never occur, occurring cases are not documented, or documented
cases differ from reality. To deploy robots in a production environment
that are designed on such a shaky basis entails a high risk. This paper
describes and evaluates a new proposal for the early stages of an RPA
project: the analysis of a process and its subsequent design. The idea is to
leverage the knowledge of back-office staff, which starts by monitoring
them in a non-invasive manner. This is done through a screen-mousekey-
logger, i.e., a sequence of images, mouse actions, and key actions
are stored along with their timestamps. The log which is obtained in
this way is transformed into a UI log through image-analysis techniques
(e.g., fingerprinting or OCR) and then transformed into a process model
by the use of process discovery algorithms. We evaluated this method for
two real-life, industrial cases. The evaluation shows clear and substantial
benefits in terms of accuracy and speed. This paper presents the method,
along with a number of limitations that need to be addressed such that
it can be applied in wider contexts.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-
Ultrafast changes in lattice symmetry probed by coherent phonons
The electronic and structural properties of a material are strongly
determined by its symmetry. Changing the symmetry via a photoinduced phase
transition offers new ways to manipulate material properties on ultrafast
timescales. However, in order to identify when and how fast these phase
transitions occur, methods that can probe the symmetry change in the time
domain are required. We show that a time-dependent change in the coherent
phonon spectrum can probe a change in symmetry of the lattice potential, thus
providing an all-optical probe of structural transitions. We examine the
photoinduced structural phase transition in VO2 and show that, above the phase
transition threshold, photoexcitation completely changes the lattice potential
on an ultrafast timescale. The loss of the equilibrium-phase phonon modes
occurs promptly, indicating a non-thermal pathway for the photoinduced phase
transition, where a strong perturbation to the lattice potential changes its
symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure
Gate-tuned normal and superconducting transport at the surface of a topological insulator
Three-dimensional topological insulators are characterized by the presence of
a bandgap in their bulk and gapless Dirac fermions at their surfaces. New
physical phenomena originating from the presence of the Dirac fermions are
predicted to occur, and to be experimentally accessible via transport
measurements in suitably designed electronic devices. Here we study transport
through superconducting junctions fabricated on thin Bi2Se3 single crystals,
equipped with a gate electrode. In the presence of perpendicular magnetic field
B, sweeping the gate voltage enables us to observe the filling of the Dirac
fermion Landau levels, whose character evolves continuously from electron- to
hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned,
and is minimum at the charge neutrality point determined from the Landau level
filling. Our results demonstrate how gated nano-electronic devices give control
over normal and superconducting transport of Dirac fermions at an individual
surface of a three-dimensional topological insulator.Comment: 28 pages, 5 figure
The Hagedorn spectrum and large QCD in 2+1 and 3+1 dimensions
We show that a Hagedorn spectrum (i.e., spectrum where the number of hadrons
grows exponentially with the mass) emerges automatically in large QCD in
2+1 and 3+1 dimensions. The approach is based on the study of Euclidean space
correlation functions for composite operators constructed from quark and gluon
fields and exploits the fact that the short time behavior of the correlators is
known in QCD. The demonstration relies on one critical assumption: that
perturbation theory accurately describes the trace of the logarithm of a matrix
of point-to-point correlation functions in the regime where the perturbative
corrections to the asymptotically free value are small.Comment: 18 pages, 5 figure
- …
