3,137 research outputs found

    Carotid stenting for irradiation-associated carotid stenosis 3 years after previous carotid endarterectomy

    Get PDF
    Extracranial carotid stenosis is a known complication of external irradiation to the head and neck region. We report on a patient with previous carotid endarterectomy for irradiation-associated carotid stenosis. This patient developed symptomatic carotid stenosis over the ipsilateral common carotid artery proximal to the previous endarterectomy site 3 years later, and was successfully treated with carotid angioplasty and stenting. This case illustrates the importance of Duplex scan surveillance after carotid endarterectomy for patients with irradiation-associated carotid stenosis. The complimentary role of carotid endarterectomy and carotid angioplasty for managing such a patient is highlighted.published_or_final_versio

    Thrombolytic and interventional therapy for acute ischaemic stroke – are we ready in Hong Kong?

    Get PDF
    Symposium 3 — Symposium on Strokepublished_or_final_versio

    Learning to read and spell english words by Chinese students

    Get PDF
    This study examined the structural relationships between (a) the latent independent constructs of orthographic and lexical knowledge and phonological sensitivity and (b) the effect of these constructs on the latent construct of literacy manifested by reading aloud and spelling regular and exception English words in 156 Cantonese-speaking Chinese students (M age = 10.8 years) who were learning English as a second language in Hong Kong. Three carefully designed and item-analyzed indicators subserved the construct of orthographic and lexical knowledge, and another three indicators subserved the construct of phonological sensitivity. Our hypothesis of greater contribution of word-specific orthographic and lexical knowledge than phonological sensitivity to learning to read and spell English words in these Chinese children was supported by results from multiple regression, principal component analyses and especially by structural equation modeling. The various goodness-of-fit indexes showed the appropriateness of the indicators in measuring the latent constructs as well as the relationships among these constructs.published_or_final_versio

    GCNT3 (glucosaminyl (N-acetyl) transferase 3, mucin type)

    Get PDF
    Review on GCNT3 (glucosaminyl (N-acetyl) transferase 3, mucin type), with data on DNA, on the protein encoded, and where the gene is implicated

    Self-Assembly of 4-sided Fractals in the Two-handed Tile Assembly Model

    Full text link
    We consider the self-assembly of fractals in one of the most well-studied models of tile based self-assembling systems known as the Two-handed Tile Assembly Model (2HAM). In particular, we focus our attention on a class of fractals called discrete self-similar fractals (a class of fractals that includes the discrete Sierpi\'nski carpet). We present a 2HAM system that finitely self-assembles the discrete Sierpi\'nski carpet with scale factor 1. Moreover, the 2HAM system that we give lends itself to being generalized and we describe how this system can be modified to obtain a 2HAM system that finitely self-assembles one of any fractal from an infinite set of fractals which we call 4-sided fractals. The 2HAM systems we give in this paper are the first examples of systems that finitely self-assemble discrete self-similar fractals at scale factor 1 in a purely growth model of self-assembly. Finally, we show that there exists a 3-sided fractal (which is not a tree fractal) that cannot be finitely self-assembled by any 2HAM system

    Inspection of Computed Tomography (CT) Data and Finite Element (FE) Simulation of Additive Manufactured (AM) Components

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisherOne of the challenges of working with Additive Manufactured (AM) metal parts involves checking accuracy and reliability before production. Techniques used Computed Tomography (CT) scans, 3D image processing, and Finite Element (FE) simulation help detect problems prior to costly faults. A workflow has been developed by Synopsys, ANSYS, North Star Imaging, and the University of Pittsburgh to streamline this often-complex process, with applications to analyzing metal AM-produced lightweight brackets and a component from Moog, Inc. Software like Synopsys Simplewareℱ is used to generate robust models from 3D scans of AM parts to compare original CAD models with ‘as-built’ geometries, and to export a FE mesh for simulation in ANSYS. This method enables identification of design deviations early in the design process, and how their impact might be tackled prior to production. For the Moog application, unexpected defects were identified for aerospace parts to inform future design iteration

    Spin and Chirality Effects in Antler-Topology Processes at High Energy e+e−e^+e^- Colliders

    Full text link
    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e+e−→P+P−→(ℓ+D0)(ℓ−Dˉ0)e^+e^-\to\mathcal{P}^+\mathcal{P}^-\to (\ell^+ \mathcal{D}^0) (\ell^-\mathcal{\bar{D}}^0) at high energy e+e−e^+e^- colliders with polarized beams. Generally the production process e+e−→P+P−e^+e^-\to\mathcal{P}^+\mathcal{P}^- can occur not only through the ss-channel exchange of vector bosons, V0\mathcal{V}^0, including the neutral Standard Model (SM) gauge bosons, γ\gamma and ZZ, but also through the ss- and tt-channel exchanges of new neutral states, S0\mathcal{S}^0 and T0\mathcal{T}^0, and the uu-channel exchange of new doubly-charged states, U−−\mathcal{U}^{--}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P+P−\mathcal{P}^+\mathcal{P}^- pair production in e+e−e^+e^- collisions with longitudinal and transverse polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high energy e+e−e^+e^- collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ

    Electronic stress tensor analysis of hydrogenated palladium clusters

    Get PDF
    We study the chemical bonds of small palladium clusters Pd_n (n=2-9) saturated by hydrogen atoms using electronic stress tensor. Our calculation includes bond orders which are recently proposed based on the stress tensor. It is shown that our bond orders can classify the different types of chemical bonds in those clusters. In particular, we discuss Pd-H bonds associated with the H atoms with high coordination numbers and the difference of H-H bonds in the different Pd clusters from viewpoint of the electronic stress tensor. The notion of "pseudo-spindle structure" is proposed as the region between two atoms where the largest eigenvalue of the electronic stress tensor is negative and corresponding eigenvectors forming a pattern which connects them.Comment: 22 pages, 13 figures, published online, Theoretical Chemistry Account

    Physiology and cell biology of acupuncture observed in calcium signaling activated by acoustic shear wave

    Get PDF
    This article presents a novel model of acupuncture physiology based on cellular calcium activation by an acoustic shear wave (ASW) generated by the mechanical movement of the needle. An acupuncture needle was driven by a piezoelectric transducer at 100 Hz or below, and the ASW in human calf was imaged by magnetic resonance elastography. At the cell level, the ASW activated intracellular Ca 2+ transients and oscillations in fibroblasts and endothelial, ventricular myocytes and neuronal PC-12 cells along with frequency-amplitude tuning and memory capabilities. Monitoring in vivo mammalian experiments with ASW, enhancement of endorphin in blood plasma and blocking by Gd 3+ were observed; and increased Ca 2+ fluorescence in mouse hind leg muscle was imaged by two-photon microscopy. In contrast with traditional acupuncture models, the signal source is derived from the total acoustic energy. ASW signaling makes use of the anisotropy of elasticity of tissues as its waveguides for transmission and that cell activation is not based on the nervous system. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    The Tevatron at the Frontier of Dark Matter Direct Detection

    Get PDF
    Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. We study these bounds both in the case where there is a contact interaction between DM and the standard model and where there is a mediator kinematically accessible at the Tevatron. We find that in many cases the Tevatron provides the current best limit, particularly for light dark matter, below 5 GeV, and for spin dependent interactions. Non-standard dark matter candidates are also constrained. The introduction of a light mediator significantly weakens the collider bound. A direct detection discovery that is in apparent conflict with mono-jet limits will thus point to a new light state coupling the standard model to the dark sector. Mono-jet searches with more luminosity and including the spectrum shape in the analysis can improve the constraints on DM-nucleon scattering cross section.Comment: 20 pages, 8 figures, final version in JHE
    • 

    corecore