We consider the self-assembly of fractals in one of the most well-studied
models of tile based self-assembling systems known as the Two-handed Tile
Assembly Model (2HAM). In particular, we focus our attention on a class of
fractals called discrete self-similar fractals (a class of fractals that
includes the discrete Sierpi\'nski carpet). We present a 2HAM system that
finitely self-assembles the discrete Sierpi\'nski carpet with scale factor 1.
Moreover, the 2HAM system that we give lends itself to being generalized and we
describe how this system can be modified to obtain a 2HAM system that finitely
self-assembles one of any fractal from an infinite set of fractals which we
call 4-sided fractals. The 2HAM systems we give in this paper are the first
examples of systems that finitely self-assemble discrete self-similar fractals
at scale factor 1 in a purely growth model of self-assembly. Finally, we show
that there exists a 3-sided fractal (which is not a tree fractal) that cannot
be finitely self-assembled by any 2HAM system