3,650 research outputs found

    Perfectionism and achievement goal orientations in adolescent school students

    Get PDF
    Perfectionism has been shown to predict individual differences in achievement goal orientations in university students, but research on perfectionism and goal orientations in school students is still very limited. Investigating 584 adolescent school students in a cross-sectional correlational design, the present study examined how self-oriented and socially prescribed perfectionism predicted students’ goal orientations. Multiple regression analyses showed that, when the overlap between the different goal orientations was controlled for, self-oriented perfectionism positively predicted mastery-approach and mastery-avoidance goal orientations whereas socially prescribed perfectionism positively predicted performance-approach orientation. The present findings indicate that perfectionism predicts individual differences in adolescent school students’ achievement goal orientations, but different forms of perfectionism are associated with different patterns of goal orientations

    Effects of Parkinson’s disease on optic flow perception for heading direction during navigation

    Full text link
    Visuoperceptual disorders have been identified in individuals with Parkinson’s disease (PD) and may affect the perception of optic flow for heading direction during navigation. Studies in healthy subjects have confirmed that heading direction can be determined by equalizing the optic flow speed (OS) between visual fields. The present study investigated the effects of PD on the use of optic flow for heading direction, walking parameters, and interlimb coordination during navigation, examining the contributions of OS and spatial frequency (dot density). Twelve individuals with PD without dementia, 18 age-matched normal control adults (NC), and 23 young control adults (YC) walked through a virtual hallway at about 0.8 m/s. The hallway was created by random dots on side walls. Three levels of OS (0.8, 1.2, and 1.8 m/s) and dot density (1, 2, and 3 dots/m2) were presented on one wall while on the other wall, OS and dot density were fixed at 0.8 m/s and 3 dots/m2, respectively. Three-dimensional kinematic data were collected, and lateral drift, walking speed, stride frequency and length, and frequency, and phase relations between arms and legs were calculated. A significant linear effect was observed on lateral drift to the wall with lower OS for YC and NC, but not for PD. Compared to YC and NC, PD veered more to the left under OS and dot density conditions. The results suggest that healthy adults perceive optic flow for heading direction. Heading direction in PD may be more affected by the asymmetry of dopamine levels between the hemispheres and by motor lateralization as indexed by handedness.Published versio

    Automated detection and analysis of Ca(2+) sparks in x-y image stacks using a thresholding algorithm implemented within the open-source image analysis platform ImageJ.

    Get PDF
    Previous studies have used analysis of Ca(2+) sparks extensively to investigate both normal and pathological Ca(2+) regulation in cardiac myocytes. The great majority of these studies used line-scan confocal imaging. In part, this is because the development of open-source software for automatic detection of Ca(2+) sparks in line-scan images has greatly simplified data analysis. A disadvantage of line-scan imaging is that data are collected from a single row of pixels, representing only a small fraction of the cell, and in many instances x-y confocal imaging is preferable. However, the limited availability of software for Ca(2+) spark analysis in two-dimensional x-y image stacks presents an obstacle to its wider application. This study describes the development and characterization of software to enable automatic detection and analysis of Ca(2+) sparks within x-y image stacks, implemented as a plugin within the open-source image analysis platform ImageJ. The program includes methods to enable precise identification of cells within confocal fluorescence images, compensation for changes in background fluorescence, and options that allow exclusion of events based on spatial characteristics

    Acetylation of conserved lysines in bovine papillomavirus E2 by p300

    Get PDF
    The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV) and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcription, the mechanism has not been determined. Using RNA interference (RNAi) to deplete these factors, we demonstrated that E2 transcriptional activity requires physiological levels of p300, CBP, and pCAF. Each protein appears to have a unique function in E2-dependent transcription, since overexpression of one KAT failed to compensate for RNAi knockdown of another KAT. Using an in vitro acetylation assay, we identified highly conserved lysines that are targeted by p300 for acetylation. The conservative changes of lysines at positions 111 and 112 to arginine were of particular interest. The K111R and the K111R/K112R mutants showed reduced transcriptional activity that was not responsive to p300 overexpression, while the K112R mutant retained activity. p300 and CBP were detected at the viral promoter; however, pCAF was not. We propose a model by which E2 transcriptional activity is controlled by p300-mediated acetylation of lysine 111. This model represents a novel mechanism regulating papillomavirus gene expression

    Extending the wavelength range of multi-spectral microscope systems with Fourier ptychography

    Get PDF
    Due to the chromatic dispersion properties inherent in all optical materials, even the best designed multi-spectral objective will exhibit residual chromatic aberration effect. Here we show that the aberration correction ability of Fourier Ptychographic Microscopy (FPM) is well matched and well suited for post-image acquisition correction of these effects to render in-focus images. We show that an objective with significant spectral focal shift (up to 0.02 ÎĽm/nm) and spectral field curvature (up to 0.05 ÎĽm/nm drift at off-axis position of 800ÎĽm) can be computationally corrected to render images with effectively null spectral defocus and field curvature. This approach of combining optical objective design and computational microscopy provides a good strategy for high quality multi-spectral imaging over a broad spectral range, and eliminating the need for mechanical actuation solutions

    Albedos and diameters of three Mars Trojan asteroids

    Full text link
    We observed the Mars Trojan asteroids (5261) Eureka and (101429) 1998 VF31 and the candidate Mars Trojan 2001 FR127 at 11.2 and 18.1 microns using Michelle on the Gemini North telescope. We derive diameters of 1.28, 0.78, and <0.52 km, respectively, with corresponding geometric visible albedos of 0.39, 0.32, and >0.14. The albedos for Eureka and 1998 VF31 are consistent with the taxonomic classes and compositions (S(I)/angritic and S(VII)/achrondritic, respectively) and implied histories presented in a companion paper by Rivkin et al. Eureka's surface likely has a relatively high thermal inertia, implying a thin regolith that is consistent with predictions and the small size that we derive.Comment: Icarus, in press. See companion paper 0709.1925 by Rivkin et al; two minor typos fixe

    Millisecond dips in the 2007-2009 RXTE/PCA lightcurve of Sco X-1 and one possible occultation event

    Full text link
    Serendipitous stellar occultation search is so far the only way to detect the existence of very small, very dim, remote objects in the solar system. To date, however, there are only very few reported detections for trans-Neptunian objects (TNOs) in optical bands. In the X-ray band, with the RXTE/PCA data of Sco X-1 taken from June 2007 to October 2009, we found one possible X-ray occultation event. We discuss the veracity and properties of this event, and suggest upper limits to the size distribution of TNOs at hectometer size and of Main-Belt Asteroids (MBAs) at decameter size.Comment: 8 pages, 5 figures, to appear in MNRAS (accepted on Sep. 10, 2010

    Renormalization group study of interacting electrons

    Full text link
    The renormalization-group (RG) approach proposed earlier by Shankar for interacting spinless fermions at T=0T=0 is extended to the case of non-zero temperature and spin. We study a model with SU(N)SU(N)-invariant short-range effective interaction and rotationally invariant Fermi surface in two and three dimensions. We show that the Landau interaction function of the Fermi liquid, constructed from the bare parameters of the low-energy effective action, is RG invariant. On the other hand, the physical forward scattering vertex is found as a stable fixed point of the RG flow. We demonstrate that in d=2d=2 and 3, the RG approach to this model is equivalent to Landau's mean-field treatment of the Fermi liquid. We discuss subtleties associated with the symmetry properties of the scattering amplitude, the Landau function and the low-energy effective action. Applying the RG to response functions, we find the compressibility and the spin susceptibility as fixed points.Comment: 11 pages, RevTeX 3.0, 2 PostScript figure

    CREB is a critical regulator of normal hematopoiesis and leukemogenesis

    Get PDF
    The cAMP-responsive element binding protein (CREB) is a 43-kDa nuclear transcription factor that regulates cell growth, memory, and glucose homeostasis. We showed previously that CREB is amplified in myeloid leukemia blasts and expressed at higher levels in leukemia stem cells from patients with myeloid leukemia. CREB transgenic mice develop myeloproliferative disease after 1 year, but not leukemia, suggesting that CREB contributes to but is not sufficient for leukemogenesis. Here, we show that CREB is most highly expressed in lineage negative hematopoietic stem cells (HSCs). To understand the role of CREB in hematopoietic progenitors and leukemia cells, we examined the effects of RNA interference (RNAi) to knock down CREB expression in vitro and in vivo. Transduction of primary HSCs or myeloid leukemia cells with lentiviral CREB shRNAs resulted in decreased proliferation of stem cells, cell- cycle abnormalities, and inhibition of CREB transcription. Mice that received transplants of bone marrow transduced with CREB shRNA had decreased committed progenitors compared with control mice. Mice injected with Ba/F3 cells expressing either Bcr-Abl wild-type or T315I mutation with CREB shRNA had delayed leukemic infiltration by bioluminescence imaging and prolonged median survival. Our results suggest that CREB is critical for normal myelopoiesis and leukemia cell proliferation
    • …
    corecore