3,418 research outputs found

    Comparison of blade loads of fixed and free yawing wind turbine

    Get PDF
    The self regulating composite bearingless wind turbine utilizes an automatic pitch control concept and a completely unrestrained yawing degree of freedom. Aerodynamic moments caused by skewed flow provide the control to align the wind turbine with the wind. Model tests demonstrated the feasibility of the concept and analytical studies showed the free system to experience lower blade loads compared to the fixed system

    Investigation of a bearingless helicopter rotor concept having a composite primary structure

    Get PDF
    Experimental and analytical investigations were conducted to evaluate a bearingless helicopter rotor concept (CBR) made possible through the use of the specialized nonisotropic properties of composite materials. The investigation was focused on four principal areas which were expected to answer important questions regarding the feasibility of this concept. First, an examination of material properties was made to establish moduli, ultimate strength, and fatigue characteristics of unidirectional graphite/epoxy, the composite material selected for this application. The results confirmed the high bending modulus and strengths and low shear modulus expected of this material, and demonstrated fatigue properties in torsion which make this material ideally suited for the CBR application. Second, a dynamically scaled model was fabricated and tested in the low speed wind tunnel to explore the aeroelastic characteristics of the CBR and to explore various concepts relative to the method of blade pitch control. Two basic control configurations were tested, one in which pitch flap coupling could occur and another which eliminated all coupling. It was found that both systems could be operated successfully at simulated speeds of 180 knots; however, the configuration with coupling present revealed a potential for undesirable aeroelastic response. The uncoupled configuration behaved generally as a conventional hingeless rotor and was stable for all conditions tested

    A Minimal Developmental Model Can Increase Evolvability in Soft Robots

    Full text link
    Different subsystems of organisms adapt over many time scales, such as rapid changes in the nervous system (learning), slower morphological and neurological change over the lifetime of the organism (postnatal development), and change over many generations (evolution). Much work has focused on instantiating learning or evolution in robots, but relatively little on development. Although many theories have been forwarded as to how development can aid evolution, it is difficult to isolate each such proposed mechanism. Thus, here we introduce a minimal yet embodied model of development: the body of the robot changes over its lifetime, yet growth is not influenced by the environment. We show that even this simple developmental model confers evolvability because it allows evolution to sweep over a larger range of body plans than an equivalent non-developmental system, and subsequent heterochronic mutations 'lock in' this body plan in more morphologically-static descendants. Future work will involve gradually complexifying the developmental model to determine when and how such added complexity increases evolvability

    User's manual for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program

    Get PDF
    The REEDM computer program predicts concentrations, dosages, and depositions downwind from normal and abnormal launches of rocket vehicles at NASA's Kennedy Space Center. The atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model are described mathematically Vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud, and meteorological layering techniques are presented as well as user's instructions for REEDM. Worked example problems are included

    It Could Not Be Seen Because It Could Not Be Believed on June 30, 2013

    Get PDF
    Nineteen Prescott Fire Department, Granite Mountain Hot Shot (GMHS) wildland firefighters (WF) perished in Arizona in June 2013 Yarnell Hill Fire, an inexplicable wildland fire disaster. In complex wildland fires, sudden, dynamic changes in human factors and fire conditions can occur, thus mistakes can be unfortunately fatal. Individual and organizational faults regarding the predictable, puzzling, human failures that will result in future WF deaths are addressed. The GMHS were individually, then collectively fixated with abandoning their Safety Zone to reengage, committing themselves at the worst possible time, to relocate to another Safety Zone - a form of collective tunnel vision. Our goal is to provoke meaningful discussion toward improved wildland firefighter safety with practical solutions derived from a long-established wildland firefighter expertise/performance in a fatality-prone profession. Wildfire fatalities are unavoidable, hence these proposals, applied to ongoing training, can significantly contribute to other well-thought-out and validated measures to reduce them

    Causality and the semantics of provenance

    Full text link
    Provenance, or information about the sources, derivation, custody or history of data, has been studied recently in a number of contexts, including databases, scientific workflows and the Semantic Web. Many provenance mechanisms have been developed, motivated by informal notions such as influence, dependence, explanation and causality. However, there has been little study of whether these mechanisms formally satisfy appropriate policies or even how to formalize relevant motivating concepts such as causality. We contend that mathematical models of these concepts are needed to justify and compare provenance techniques. In this paper we review a theory of causality based on structural models that has been developed in artificial intelligence, and describe work in progress on a causal semantics for provenance graphs.Comment: Workshop submissio

    Program listing for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program

    Get PDF
    The program listing for the REEDM Computer Program is provided. A mathematical description of the atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model; vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud and meteorological layering techniques; user's instructions for the REEDM computer program; and worked example problems are contained in NASA CR-3646

    Contrasting Properties of Motor Output from the Supplementary Motor Area and Primary Motor Cortex in Rhesus Macaques

    Get PDF
    The goal of this study was to assess the motor output capabilities of the forelimb representation of the supplementary motor area (SMA) in terms of the sign, latency and strength of effects on electromyographic (EMG) activity. Stimulus triggered averages of EMG activity from 24 muscles of the forelimb were computed in SMA during a reach-to-grasp task. Poststimulus facilitation (PStF) from SMA had two distinct peaks (15.2 and 55.2 ms) and one poststimulus suppression (PStS) peak (32.4 ms). The short onset latency PStF and PStS of SMA were 5.5 and 16.8 ms longer than those of the primary motor cortex (M1). The average magnitudes (peak increase or decrease above baseline) of the short and long latency PStF and PStS from SMA at 60 μA were 13.8, 11.3 and −11.9% respectively. In comparison, M1 PStF and PStS magnitudes at 15 μA were 50.2 and −23.8%. Extrapolating M1 PStF magnitude to 60 μA yields a mean effect that is nearly 15 times greater than the mean PStF from SMA. Moreover, unlike M1, the facilitation of distal muscles from SMA was not significantly greater than the facilitation of proximal muscles. We conclude that the output from SMA to motoneurons is markedly weaker compared with M1 raising doubts about the role of SMA corticospinal neurons in the direct control of muscle activit

    A dependent nominal type theory

    Full text link
    Nominal abstract syntax is an approach to representing names and binding pioneered by Gabbay and Pitts. So far nominal techniques have mostly been studied using classical logic or model theory, not type theory. Nominal extensions to simple, dependent and ML-like polymorphic languages have been studied, but decidability and normalization results have only been established for simple nominal type theories. We present a LF-style dependent type theory extended with name-abstraction types, prove soundness and decidability of beta-eta-equivalence checking, discuss adequacy and canonical forms via an example, and discuss extensions such as dependently-typed recursion and induction principles

    Nominal Unification of Higher Order Expressions with Recursive Let

    Get PDF
    A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for plain expressions and for DAGs and determine the complexity of corresponding unification problems.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534
    corecore