151 research outputs found

    Practical scheme for a light-induced gauge field in an atomic Bose gas

    Full text link
    We propose a scheme to generate an Abelian gauge field in an atomic gas using two crossed laser beams. If the internal atomic state follows adiabatically the eigenstates of the atom-laser interaction, Berry's phase gives rise to a vector potential that can nucleate vortices in a Bose gas. The present scheme operates even for a large detuning with respect to the atomic resonance, making it applicable to alkali-metal atoms without significant heating due to spontaneous emission. We test the validity of the adiabatic approximation by integrating the set of coupled Gross-Pitaevskii equations associated with the various internal atomic states, and we show that the steady state of the interacting gas indeed exhibits a vortex lattice, as expected from the adiabatic gauge field.Comment: 4 pages, 3 figure

    Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    Get PDF
    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure

    Microscopic observation of magnon bound states and their dynamics

    Get PDF
    More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure

    Stakeholder narratives on trypanosomiasis, their effect on policy and the scope for One Health

    Get PDF
    Background This paper explores the framings of trypanosomiasis, a widespread and potentially fatal zoonotic disease transmitted by tsetse flies (Glossina species) affecting both humans and livestock. This is a country case study focusing on the political economy of knowledge in Zambia. It is a pertinent time to examine this issue as human population growth and other factors have led to migration into tsetse-inhabited areas with little historical influence from livestock. Disease transmission in new human-wildlife interfaces such as these is a greater risk, and opinions on the best way to manage this are deeply divided. Methods A qualitative case study method was used to examine the narratives on trypanosomiasis in the Zambian policy context through a series of key informant interviews. Interviewees included key actors from international organisations, research organisations and local activists from a variety of perspectives acknowledging the need to explore the relationships between the human, animal and environmental sectors. Principal Findings Diverse framings are held by key actors looking from, variously, the perspectives of wildlife and environmental protection, agricultural development, poverty alleviation, and veterinary and public health. From these viewpoints, four narratives about trypanosomiasis policy were identified, focused around four different beliefs: that trypanosomiasis is protecting the environment, is causing poverty, is not a major problem, and finally, that it is a Zambian rather than international issue to contend with. Within these narratives there are also conflicting views on the best control methods to use and different reasoning behind the pathways of response. These are based on apparently incompatible priorities of people, land, animals, the economy and the environment. The extent to which a One Health approach has been embraced and the potential usefulness of this as a way of reconciling the aims of these framings and narratives is considered throughout the paper. Conclusions/Significance While there has historically been a lack of One Health working in this context, the complex, interacting factors that impact the disease show the need for cross-sector, interdisciplinary decision making to stop rival narratives leading to competing actions. Additional recommendations include implementing: surveillance to assess under-reporting of disease and consequential under-estimation of disease risk; evidence-based decision making; increased and structurally managed funding across countries; and focus on interactions between disease drivers, disease incidence at the community level, and poverty and equity impacts

    Ultrafast spin-currents and charge conversion at \u3ci\u3e3d-5d\u3c/i\u3e interfaces probed by time-domain terahertz spectroscopy

    Get PDF
    Spintronic structures are extensively investigated for their spin-orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-Transition metal interfaces due to their inverse spin-Hall effect properties. In particular, the intrinsic inverse spin-Hall effect of Pt-based systems and extrinsic inverse spin-Hall effect of Au:W and Au:Ta in NiFe/Au:(W,Ta) bilayers are investigated. The spin-charge conversion is probed by complementary techniques-ultrafast THz time-domain spectroscopy in the dynamic regime for THz pulse emission and ferromagnetic resonance spin-pumping measurements in the GHz regime in the steady state-to determine the role played by the material properties, resistivities, spin transmission at metallic interfaces, and spin-flip rates. These measurements show the correspondence between the THz time-domain spectroscopy and ferromagnetic spin-pumping for the different set of samples in term of the spin mixing conductance. The latter quantity is a critical parameter, determining the strength of the THz emission from spintronic interfaces. This is further supported by ab initio calculations, simulations, and analysis of the spin-diffusion and spin-relaxation of carriers within the multilayers in the time domain, permitting one to determine the main trends and the role of spin transmission at interfaces. This work illustrates that time-domain spectroscopy for spin-based THz emission is a powerful technique to probe spin-dynamics at active spintronic interfaces and to extract key material properties for spin-charge conversion

    The trapped two-dimensional Bose gas: from Bose-Einstein condensation to Berezinskii-Kosterlitz-Thouless physics

    Full text link
    We analyze the results of a recent experiment with bosonic rubidium atoms harmonically confined in a quasi-two-dimensional geometry. In this experiment a well defined critical point was identified, which separates the high-temperature normal state characterized by a single component density distribution, and the low-temperature state characterized by a bimodal density distribution and the emergence of high-contrast interference between independent two-dimensional clouds. We first show that this transition cannot be explained in terms of conventional Bose-Einstein condensation of the trapped ideal Bose gas. Using the local density approximation, we then combine the mean-field (MF) Hartree-Fock theory with the prediction for the Berezinskii-Kosterlitz-Thouless transition in an infinite uniform system. If the gas is treated as a strictly 2D system, the MF predictions for the spatial density profiles significantly deviate from those of a recent Quantum Monte-Carlo (QMC) analysis. However when the residual thermal excitation of the strongly confined degree of freedom is taken into account, an excellent agreement is reached between the MF and the QMC approaches. For the interaction strength corresponding to the experiment, we predict a strong correction to the critical atom number with respect to the ideal gas theory (factor ∼2\sim 2). A quantitative agreement between theory and experiment is reached concerning the critical atom number if the predicted density profiles are used for temperature calibration.Comment: 23 pages, 7 figures, accepted for publication in New Journal of Physics. v3: Typos and acknowledgment section correcte
    • …
    corecore