1,395 research outputs found

    Observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta'

    Get PDF
    We report the observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta' using 1.3×1091.3\times{10^9} J/ψJ/\psi events collected with the BESIII detector. Its branching fraction, including all possible intermediate states, is measured to be (2.32±0.06±0.16)×104(2.32\pm0.06\pm0.16)\times{10^{-4}}. We also report evidence for a structure, denoted as XX, in the ϕη\phi\eta' mass spectrum in the 2.02.12.0-2.1 GeV/c2c^2 region. Using two decay modes of the η\eta' meson (γπ+π\gamma\pi^+\pi^- and ηπ+π\eta\pi^+\pi^-), a simultaneous fit to the ϕη\phi\eta' mass spectra is performed. Assuming the quantum numbers of the XX to be JP=1J^P = 1^-, its significance is found to be 4.4σ\sigma, with a mass and width of (2002.1±27.5±21.4)(2002.1 \pm 27.5 \pm 21.4) MeV/c2c^2 and (129±17±9)(129 \pm 17 \pm 9) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.8±1.2±1.7)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.8 \pm 1.2 \pm 1.7)\times10^{-5}. Alternatively, assuming JP=1+J^P = 1^+, the significance is 3.8σ\sigma, with a mass and width of (2062.8±13.1±7.2)(2062.8 \pm 13.1 \pm 7.2) MeV/c2c^2 and (177±36±35)(177 \pm 36 \pm 35) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.6±1.4±2.0)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.6 \pm 1.4 \pm 2.0)\times10^{-5}. The angular distribution of J/ψηXJ/\psi\rightarrow\eta{}X is studied and the two JPJ^P assumptions of the XX cannot be clearly distinguished due to the limited statistics. In all measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table

    Observation of an anomalous line shape of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} mass spectrum near the ppˉp\bar{p} mass threshold in J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-}

    Get PDF
    Using 1.09×1091.09\times10^{9} J/ψJ/\psi events collected by the BESIII experiment in 2012, we study the J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-} process and observe a significant abrupt change in the slope of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} invariant mass distribution at the proton-antiproton (ppˉp\bar{p}) mass threshold. We use two models to characterize the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} line shape around 1.85 GeV/c21.85~\text{GeV}/c^{2}: one which explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatt\'{e} formula), and another which is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85 GeV/c21.85~\text{GeV}/c^{2} with strong couplings to ppˉp\bar{p} final states or a narrow state just below the ppˉp\bar{p} mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a ppˉp\bar{p} molecule-like state or bound state with greater than 7σ7\sigma significance

    Observation of Ds+pnˉD^+_s\rightarrow p\bar{n} and confirmation of its large branching fraction

    Full text link
    The baryonic decay Ds+pnˉD^+_s\rightarrow p\bar{n} is observed, and the corresponding branching fraction is measured to be (1.21±0.10±0.05)×103(1.21\pm0.10\pm0.05)\times10^{-3}, where the first uncertainty is statistical and second systematic. The data sample used in this analysis was collected with the BESIII detector operating at the BEPCII e+ee^+e^- double-ring collider with a center-of-mass energy of 4.178~GeV and an integrated luminosity of 3.19~fb1^{-1}. The result confirms the previous measurement by the CLEO Collaboration and is of greatly improved precision, which may deepen our understanding of the dynamical enhancement of the W-annihilation topology in the charmed meson decays

    Observation of hch_{c} radiative decay hcγηh_{c} \rightarrow \gamma \eta' and evidence for hcγηh_{c} \rightarrow \gamma \eta

    Get PDF
    A search for radiative decays of the PP-wave spin singlet charmonium resonance hch_c is performed based on 4.48×1084.48 \times 10^{8} ψ\psi' events collected with the BESIII detector operating at the BEPCII storage ring. Events of the reaction channels hcγηh_{c} \rightarrow \gamma \eta' and γη\gamma \eta are observed with a statistical significance of 8.4σ8.4 \sigma and 4.0σ4.0 \sigma, respectively, for the first time. The branching fractions of hcγηh_{c} \rightarrow \gamma \eta' and hcγηh_{c} \rightarrow \gamma \eta are measured to be B(hcγη)=(1.52±0.27±0.29)×103\mathcal{B}(h_{c} \rightarrow \gamma \eta')=(1.52 \pm 0.27 \pm 0.29)\times10^{-3} and B(hcγη)=(4.7±1.5±1.4)×104\mathcal{B}(h_{c} \rightarrow \gamma \eta)=(4.7 \pm 1.5 \pm 1.4)\times10^{-4}, respectively, where the first errors are statistical and the second are systematic uncertainties.Comment: 7 pages, 2 figure

    Improved measurement of the absolute branching fraction of D+Kˉ0μ+νμD^{+}\rightarrow \bar K^0 \mu^{+}\nu_{\mu}

    Get PDF
    By analyzing 2.93 fb1^{-1} of data collected at s=3.773\sqrt s=3.773 GeV with the BESIII detector, we measure the absolute branching fraction B(D+Kˉ0μ+νμ)=(8.72±0.07stat.±0.18sys.)%{\mathcal B}(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=(8.72 \pm 0.07_{\rm stat.} \pm 0.18_{\rm sys.})\%, which is consistent with previous measurements within uncertainties but with significantly improved precision. Combining the Particle Data Group values of B(D0Kμ+νμ){\mathcal B}(D^0\to K^-\mu^+\nu_\mu), B(D+Kˉ0e+νe){\mathcal B}(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e}), and the lifetimes of the D0D^0 and D+D^+ mesons with the value of B(D+Kˉ0μ+νμ){\mathcal B}(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu}) measured in this work, we determine the following ratios of partial widths: Γ(D0Kμ+νμ)/Γ(D+Kˉ0μ+νμ)=0.963±0.044\Gamma(D^0\to K^-\mu^+\nu_\mu)/\Gamma(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=0.963\pm0.044 and Γ(D+Kˉ0μ+νμ)/Γ(D+Kˉ0e+νe)=0.988±0.033\Gamma(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu})/\Gamma(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e})=0.988\pm0.033.Comment: 9 pages; 8 figure

    Amplitude Analysis of the Decays ηπ+ππ0\eta^\prime \rightarrow \pi^+\pi^-\pi^0 and ηπ0π0π0\eta^\prime \rightarrow \pi^0\pi^0\pi^0

    Get PDF
    Based on a sample of 1.31×1091.31 \times 10^9 J/ψJ/\psi events collected with the BESIII detector, an amplitude analysis of the isospin-violating decays ηπ+ππ0\eta^\prime \rightarrow \pi^+\pi^-\pi^0 and ηπ0π0π0\eta^\prime \rightarrow \pi^0\pi^0\pi^0 is performed. A significant PP-wave contribution from ηρ±π\eta^\prime \rightarrow \rho^{\pm} \pi^{\mp} is observed for the first time in ηπ+ππ0\eta^\prime \rightarrow \pi^+\pi^-\pi^0. The branching fraction is determined to be B(ηρ±π)=(7.44±0.60±1.26±1.84)×104{\mathcal B}(\eta^\prime \rightarrow \rho^{\pm}\pi^{\mp})=(7.44\pm0.60\pm1.26\pm1.84)\times 10^{-4}, where the first uncertainty is statistical, the second systematic, and the third model dependent. In addition to the nonresonant SS-wave component, there is a significant σ\sigma meson component. The branching fractions of the combined SS-wave components are determined to be B(ηπ+ππ0)S=(37.63±0.77±2.22±4.48)×104{\mathcal B}(\eta^\prime \rightarrow \pi^+\pi^-\pi^0)_S=(37.63\pm0.77\pm2.22\pm4.48)\times 10^{-4} and B(ηπ0π0π0)=(35.22±0.82±2.54)×104{\mathcal B}(\eta^\prime \rightarrow \pi^0\pi^0\pi^0)=(35.22\pm0.82\pm2.54)\times 10^{-4}, respectively. The latter one is consistent with previous BESIII measurements.Comment: 7 pages, 3 figure

    Study of J/ψJ/\psi and ψ(3686)Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψΣ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22

    Study of D+Kπ+e+νeD^{+} \to K^{-} \pi^+ e^+ \nu_e

    Full text link
    We present an analysis of the decay D+Kπ+e+νeD^{+} \to K^{-} \pi^+ e^+ \nu_e based on data collected by the BESIII experiment at the ψ(3770)\psi(3770) resonance. Using a nearly background-free sample of 18262 events, we measure the branching fraction B(D+Kπ+e+νe)=(3.71±0.03±0.08)%\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.08)\%. For 0.8<mKπ<1.00.8<m_{K\pi}<1.0 GeV/c2c^{2} the partial branching fraction is B(D+Kπ+e+νe)[0.8,1]=(3.33±0.03±0.07)%\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%. A partial wave analysis shows that the dominant Kˉ(892)0\bar K^{*}(892)^{0} component is accompanied by an \emph{S}-wave contribution accounting for (6.05±0.22±0.18)%(6.05\pm0.22\pm0.18)\% of the total rate and that other components are negligible. The parameters of the Kˉ(892)0\bar K^{*}(892)^{0} resonance and of the form factors based on the spectroscopic pole dominance predictions are also measured. We also present a measurement of the Kˉ(892)0\bar K^{*}(892)^{0} helicity basis form factors in a model-independent way.Comment: 17 pages, 6 figure

    Observation of ηcωω\eta_c\to\omega\omega in J/ψγωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψγωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηcωω)=(2.88±0.10±0.46±0.68)×103\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψγηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1)M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1)\Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure

    Measurement of proton electromagnetic form factors in e+eppˉe^+e^- \to p\bar{p} in the energy region 2.00-3.08 GeV

    Full text link
    The process of e+eppˉe^+e^- \rightarrow p\bar{p} is studied at 22 center-of-mass energy points (s\sqrt{s}) from 2.00 to 3.08 GeV, exploiting 688.5~pb1^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section~(σppˉ\sigma_{p\bar{p}}) of e+eppˉe^+e^- \rightarrow p\bar{p} is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (GE/GM|G_{E}/G_{M}|) and the value of the effective (Geff|G_{\rm{eff}}|), electric (GE|G_E|) and magnetic (GM|G_M|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. GE/GM|G_{E}/G_{M}| and GM|G_M| are determined with high accuracy, providing uncertainties comparable to data in the space-like region, and GE|G_E| is measured for the first time. We reach unprecedented accuracy, and precision results in the time-like region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on non-perturbative Quantum Chromodynamics
    corecore