4,009 research outputs found

    Texture Segmentation Based on Wavelet and Kohonen Network for Remotely Sensed Images

    Get PDF
    In this paper, an approach based on wavelet decomposition and Kohonen's self-organizing map is developed for image segmentation. After performing the 2D wavelet transform of image, some features are extracted for texture segmentation, and the Kohonen neural network is used to accomplish feature clustering. The experimental results demonstrated the satisfactory effect of the proposed approach both for simulated textured image and multi-spectral remotely sensed image

    Black hole variability and the star formation-active galactic nucleus connection : do all star-forming galaxies host an active galactic nucleus?

    Get PDF
    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (gsim100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ~100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to "inactive" galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR

    The Computational Complexity of the Game of Set and its Theoretical Applications

    Full text link
    The game of SET is a popular card game in which the objective is to form Sets using cards from a special deck. In this paper we study single- and multi-round variations of this game from the computational complexity point of view and establish interesting connections with other classical computational problems. Specifically, we first show that a natural generalization of the problem of finding a single Set, parameterized by the size of the sought Set is W-hard; our reduction applies also to a natural parameterization of Perfect Multi-Dimensional Matching, a result which may be of independent interest. Second, we observe that a version of the game where one seeks to find the largest possible number of disjoint Sets from a given set of cards is a special case of 3-Set Packing; we establish that this restriction remains NP-complete. Similarly, the version where one seeks to find the smallest number of disjoint Sets that overlap all possible Sets is shown to be NP-complete, through a close connection to the Independent Edge Dominating Set problem. Finally, we study a 2-player version of the game, for which we show a close connection to Arc Kayles, as well as fixed-parameter tractability when parameterized by the number of rounds played

    Patches in a side-by-side configuration: a description of the flow and deposition fields

    Get PDF
    In the last few decades, a lot of research attention has been paid to flow-vegetation interactions. Starting with the description of the flow field around uniform macrophyte stands, research has evolved more recently to the description of flow fields around individual, distinct patches. However, in the field, vegetation patches almost never occur in isolation. As such, patches will influence each other during their development and interacting, complex flow fields can be expected. In this study, two emergent patches of the same diameter (D = 22 cm) and a solid volume fraction of 10% were placed in a side-by-side configuration in a lab flume. The patches were built as an array of wooden cylinders, and the distance between the patches (gap width Delta) was varied between Delta = 0 and 14 cm. Flow measurements were performed by a 3D Vectrino Velocimeter (Nortek AS) at mid-depth of the flow. Deposition experiments of suspended solids were performed for selected gap widths. Directly behind each patch, the wake evolved in a manner identical to that of a single, isolated patch. On the centerline between the patches, the maximum velocity U-max was found to be independent of the gap width Delta. However, the length over which this maximum velocity persists, the potential core L-j, increased linearly as the gap width increased. After the merging of the wakes, the centerline velocity reaches a minimum value U-min. The minimum centerline velocity decreased in magnitude as the gap width decreased. The velocity pattern within the wake is reflected in the deposition patterns. An erosion zone occurs on the centerline between the patches, where the velocity is elevated. Deposition occurs in the low velocity zones directly behind each patch and also downstream of the patches, along the centerline between the patches at the point of local velocity minimum. This downstream deposition zone, a result of the interaction of neighbouring patch wakes, may facilitate the establishment of new vegetation, which may eventually inhibit flow between the upstream patches and facilitate patch merger

    A scaled fundamental equation for the thermodynamic properties of carbon dioxide in the critical region

    Get PDF
    A scaled fundamental equation is presented for the thermodynamic properties of carbon dioxide in the critical region. The equation is constructed by combining earlier experimental pressure data of Michels and co‐workers with new specific heat data obtained by one of the authors and represents the thermodynamic properties of carbon dioxide in the critical region at temperatures from 301.15 to 323 K and at densities from 290 to 595 kg/m3

    Incorporating a priori knowledge into initialized weights for neural classifier

    Get PDF
    Artificial neural networks (ANN), especially, multilayer perceptrons (MLP) have been widely used in pattern recognition and classification. Nevertheless, how to incorporate a priori knowledge in the design of ANNs is still an open problem. The paper tries to give some insight on this topic emphasizing weight initialization from three perspectives. Theoretical analyses and simulations are offered for validatio
    corecore