9,500 research outputs found

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Coverage analysis of heterogeneous cellular networks in urban areas

    Full text link
    © 2016 IEEE. In this article, a network model incorporating both line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions is proposed to investigate impacts of blockages in urban areas on heterogeneous network coverage performance. Results show that co-existence of NLOS and LOS transmissions has a significant impact on network performance. We find in urban areas, that deploying more BSs in different tiers is better than merely deploying all BSs in the same tier in terms of coverage probability

    Application of disease burden to quantitative assessment of health hazards for a decentralized water reuse system

    Full text link
    © 2016 Elsevier B.V. The aim of this article is to introduce the methodology of disease burden (DB) to quantify the health impact of microbial regrowth during wastewater reuse, using the case study of a decentralized water reuse system in Xi'an Si-yuan University, located in Xi'an, China. Based on field investigation findings, Escherichia coli (E. coli), Salmonella and rotavirus were selected as typical regrowth pathogens causing potential health hazards during the reuse of reclaimed water. Subsequently, major exposure routes including sprinkler irrigation, landscape fountains and toilet flushing were identified. Mathematical models were established to build the relationship between exposure dose and disease burden by calculating the disability adjusted life year (DALY). Results of disease burden for this case study show that DALYs attributed to E. coli were significantly greater than those caused by other pathogens, and DALYs associated with sprinkler irrigation were higher than those originating from other routes. A correlation between exposure dose and disease was obtained by introducing a modified calculation of morbidity, which can extend the assessment endpoint of health risk to disease burden from the conventional infection rate

    The Effect of a Hip Strengthening Program on Mechanics during Running and Single Leg Squatting

    Get PDF
    STUDY DESIGN: Block randomized controlled trial. OBJECTIVES: To investigate whether a strengthening and movement education program, targeting the hip abductors and hip external rotators, alters hip mechanics during running and during a single-leg squat. BACKGROUND: Abnormal movement patterns during running and single-leg squatting have been associated with a number of running-related injuries in females. Therapeutic interventions for these aberrant movement patterns typically include hip strengthening. While these strengthening programs have been shown to improve symptoms, it is unknown if the underlying mechanics during functional movements is altered. METHODS: Twenty healthy females with excessive hip adduction during running, as determined by instrumented gait analysis, were recruited. The runners were matched by age and running distance, and randomized to either a training group or a control group. The training group completed a hip strengthening and movement education program 3 times per week for 6 weeks in addition to single-leg squat training with neuromuscular reeducation consisting of mirror and verbal feedback on proper mechanics. The control group did not receive an intervention but maintained the current running distance. Using a handheld dynamometer and standard motion capture procedures, hip strength and running and single-leg squat mechanics were compared before and after the strengthening and movement education program. RESULTS: While hip abductor and external rotation strength increased significantly (P<.005) in the training group, there were no significant changes in hip or knee mechanics during running. However, during the single-leg squat, hip adduction, hip internal rotation, and contralateral pelvic drop all decreased significantly (P = .006, P = .006, and P = .02, respectively). The control group exhibited no changes in hip strength, nor in the single-leg squat or running mechanics at the conclusion of the 6-week study. CONCLUSION: A training program that included hip strengthening and movement training specific to single-leg squatting did not alter running mechanics but did improve single-leg squat mechanics. These results suggest that hip strengthening and movement training, when not specific to running, do not alter abnormal running mechanics. LEVEL OF EVIDENCE: Therapy, level 2b. NOTE: This is not the final published version. The final version was published in the Journal of Orthopaedic and Sports Physical Therapy. 2011 Sep; 41(9): 625-32. doi: 10.2519/jospt.2011.347

    Effect of ciprofloxacin dosages on the performance of sponge membrane bioreactor treating hospital wastewater

    Full text link
    © 2018 Elsevier Ltd This study aimed to evaluate treatment performance and membrane fouling of a lab-scale Sponge-MBR under the added ciprofloxacin (CIP) dosages (20; 50; 100 and 200 µg L−1) treating hospital wastewater. The results showed that Sponge-MBR exhibited effective removal of COD (94–98%) during the operation period despite increment of CIP concentrations from 20 to 200 µg L−1. The applied CIP dosage of 200 µg L−1 caused an inhibition of microorganisms in sponges, i.e. significant reduction of the attached biomass and a decrease in the size of suspended flocs. Moreover, this led to deteriorating the denitrification rate to 3–12% compared to 35% at the other lower CIP dosages. Importantly, Sponge-MBR reinforced the stability of CIP removal at various added CIP dosages (permeate of below 13 µg L−1). Additionally, the fouling rate at CIP dosage of 200 µg L−1 was 30.6 times lower compared to the control condition (no added CIP dosage)

    Assimilable organic carbon (AOC) variation in reclaimed water: Insight on biological stability evaluation and control for sustainable water reuse

    Full text link
    © 2018 Elsevier Ltd This review highlights the importance of conducting biological stability evaluation due to water reuse progression. Specifically, assimilable organic carbon (AOC) has been identified as a practical indicator for microbial occurrence and regrowth which ultimately influence biological stability. Newly modified AOC bioassays aimed for reclaimed water are introduced. Since elevated AOC levels are often detected after tertiary treatment, the review emphasizes that actions can be taken to either limit AOC levels prior to disinfection or conduct post-treatment (e.g. biological filtration) as a supplement to chemical oxidation based approaches (e.g. ozonation and chlorine disinfection). During subsequent distribution and storage, microbial community and possible microbial regrowth caused by complex interactions are discussed. It is suggested that microbial surveillance, AOC threshold values, real-time field applications and surrogate parameters could provide additional information. This review can be used to formulate regulatory plans and strategies, and to aid in deriving relevant control, management and operational guidance

    Aerobic co-composting degradation of highly PCDD/F-contaminated field soil. A study of bacterial community

    Full text link
    © 2018 Elsevier B.V. This study investigated bacterial communities during aerobic food waste co-composting degradation of highly PCDD/F-contaminated field soil. The total initial toxic equivalent quantity (TEQ) of the soil was 16,004 ng-TEQ kg −1 dry weight. After 42-day composting and bioactivity-enhanced monitored natural attenuation (MNA), the final compost product's TEQ reduced to 1916 ng-TEQ kg −1 dry weight (approximately 75% degradation) with a degradation rate of 136.33 ng-TEQ kg −1 day −1 . Variations in bacterial communities and PCDD/F degraders were identified by next-generation sequencing (NGS). Thermophilic conditions of the co-composting process resulted in fewer observed bacteria and PCDD/F concentrations. Numerous organic compound degraders were identified by NGS, supporting the conclusion that PCDD/Fs were degraded during food waste co-composting. Bacterial communities of the composting process were defined by four phyla (Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes). At the genus level, Bacillus (Firmicutes) emerged as the most dominant phylotype. Further studies on specific roles of these bacterial strains are needed, especially for the thermophiles which contributed to the high degradation rate of the co-co-composting treatment's first 14 days

    Wind Data Mining by Kohonen Neural Networks

    Get PDF
    Time series of Circulation Weather Type (CWT), including daily averaged wind direction and vorticity, are self-classified by similarity using Kohonen Neural Networks (KNN). It is shown that KNN is able to map by similarity all 7300 five-day CWT sequences during the period of 1975–94, in London, United Kingdom. It gives, as a first result, the most probable wind sequences preceding each one of the 27 CWT Lamb classes in that period. Inversely, as a second result, the observed diffuse correlation between both five-day CWT sequences and the CWT of the 6(th) day, in the long 20-year period, can be generalized to predict the last from the previous CWT sequence in a different test period, like 1995, as both time series are similar. Although the average prediction error is comparable to that obtained by forecasting standard methods, the KNN approach gives complementary results, as they depend only on an objective classification of observed CWT data, without any model assumption. The 27 CWT of the Lamb Catalogue were coded with binary three-dimensional vectors, pointing to faces, edges and vertex of a “wind-cube,” so that similar CWT vectors were close

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure

    Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia

    Get PDF
    Objective: Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD). Materials and Methods: Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral Quantitative Computed Tomography (pQCT) at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (U.K.). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA), and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA, and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh. Results: BMDtrab decreased exponentially with time since injury, at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI. Conclusion: At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively. Keywords: Bone loss, osteoporosis, paraplegia, peripheral Quantitative Computed Tomography, spinal cord injur
    corecore