235 research outputs found

    Direct rosiglitazone action on steroidogenesis and proinflammatory factor production in human granulosa-lutein cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian granulosa cells are the predominant source of estradiol and progesterone biosynthesis in vivo. Rosiglitazone, a synthetic agonist of the peroxisome proliferator-activated receptor gamma (PPAR gamma), is applied as the treatment of insulin resistance including women with PCOS. The aim of the study was to investigate the direct effects of rosiglitazone on steroidogenesis and proinflammatory factor production in human granulosa-lutein cells (GLCs).</p> <p>Methods</p> <p>Primary human GLCs were separated during in vitro fertilization and cultured in the presence of rosiglitazone, GW9662 (an antagonist of PPAR gamma) and hCG. The mRNA expression of key steroidogenic factors including 3beta- hydroxysteriod dehydrogenase (3beta-HSD), cytochrome P-450 scc (CYP11A1), cytochrome P-450 aromatase (CYP19A1), and steroidogenic acute regulatory protein (StAR) were detected by quantitative real-time PCR. Estradiol and progesterone levels in GLCs cultures were measured by chemiluminescence immunoassay, and the proinflammtory factors (TNFalpha and IL-6) in conditioned culture media were measured by ELISA.</p> <p>Results</p> <p>PPAR gamma mRNA levels increased up to 3.24 fold by rosiglitazone at the concentration of 30 microM compared to control (P < 0.05). hCG alone or hCG with rosiglitazone had no significant effects on PPAR gamma mRNA levels. The CYP19A1 mRNA level at exposure to rosiglitazone alone showed a drop, but was not significantly reduced comparing to control. The expression levels of enzymes 3beta-HSD and CYP11A1 in all treatments did not alter significantly. The StAR mRNA expression at exposure to rosiglitazone was significantly increased comparing to control (P < 0.05). The media concentrations of E2 and progesterone by rosiglitazone treatment showed a declining trend comparing to control or cotreatment with hCG, which did not reach significance. Most importantly, treatment with rosiglitazone decreased TNFalpha secretion in a statistically significant manner compared with control (P < 0.05). The concentration of IL-6 following rosiglitazone exposure did not significantly decrease comparing to control.</p> <p>Conclusion</p> <p>In cultured GLCs, rosiglitazone stimulated StAR expression, but did not significantly affect steroidogenic enzymes, as well as E2 and progesterone production. Moreover, rosiglitazone significantly decreased the production of TNFalpha in human GLCs, suggesting that PPAR gamma may play a role in the regulation of GLCs functions through inhibiting proinflammatory factors.</p

    Estimation of surface soil moisture by a multi-elevation UAV-based ground penetrating radar

    Get PDF
    The measurement of soil moisture is important for a wide range of applications, including ecosystem conservation and agricultural management. However, most traditional measurement methods, e.g., time-domain reflectometry (TDR), are unsuitable for mapping field scale variability. In this study, we propose a method that uses an unmanned aerial vehicle (UAV) to support a ground penetrating radar (GPR) system for spatial scanning investigation at different elevations above ground level. This method measures the surface reflectivity to estimate the soil moisture, exploiting the linear relationship between the ratio of the reflected and the direct wave amplitudes along with the reciprocal of GPR antenna height. This relationship is deduced in this study based on the point source assumptions of a transmitter antenna and ground reflections, which is confirmed by numerical simulation results using the gprMax software. Unlike previous air-launched GPR methods, the UAV-GPR method presented here removes the limitations of a steady transmitter power and a fixed GPR survey height and the need for calibration of antenna transfer functions and geophysical inversion calculations, and thus is simpler and more convenient for field applications. We test the method at field sites within the riparian zone and a river-island grassland adjacent to the Yangtze River. The results from the field study illustrate comparable measured soil moisture to those obtained invasively using TDR. The root mean square error (RMSE) of surface reflectivity and soil moisture values between UAV-GPR with 8 antenna height investigations and TDR in the grassland are 0.03 and 0.05 cm3/cm3, respectively

    Microwave Signal Replicator Design for Testing of the Multi-Channel Transcranial Magnetic Stimulator

    Get PDF
    The multi-channel transcranial magnetic stimulator is commonly used for rehabilitation treatment of ischemic cerebrovascular disease, neurosis, and brain injury diseases in the elderly. And multiple high coherency signals are required as inputs for its test, which are with consistent frequency, adjustable amplitude, equal magnitude, and long-time phase consistency ā©½Ā±1Ā°. But ordinary signal sources have only one output channel, which is far from meeting the test requirements. If the traditional power division is used for the duplication, the phase difference between the channels will be larger than Ā±1Ā°. If the multi-throw Radio Frequency (RF) switch is used, it will seriously affect the phase consistency of the input signal and increase the distortion of the signal. In order to solve the above problems, the method to extend the output of the microwave signal source has been proposed in the paper by using the integrated transceiver AD9361. The proposed method can realize the duplication of the number of signal channels according to user requirements. Then a signal replicator has been designed by combining AD9361 chip and Field-Programmable Gate Array (FPGA) control module. The experimental platform has been built to test the performance of the designed device. Experimental results show that the duplicated signals are highly consistent with the source signal in the power amplitude and frequency, meanwhile the phase of the duplicated signals are all highly consistent with each other

    Anisotropic in-plane heat transport of Kitaev magnet Na2_2Co2_2TeO6_6

    Full text link
    We report a study on low-temperature heat transport of Kitaev magnet Na2_2Co2_2TeO6_6, with the heat current and magnetic fields along the honeycomb spin layer (the abab plane). The zero-field thermal conductivity of Īŗxxa\kappa^a_{xx} and Īŗxxaāˆ—\kappa^{a*}_{xx} display similar temperature dependence and small difference in their magnitudes; whereas, their magnetic field (parallel to the heat current) dependence are quite different and are related to the field-induced magnetic transitions. The Īŗxxa(B)\kappa^a_{xx}(B) data for Bāˆ„aB \parallel a at very low temperatures have an anomaly at 10.25--10.5 T, which reveals an unexplored magnetic transition. The planar thermal Hall conductivity Īŗxya\kappa^a_{xy} and Īŗxyaāˆ—\kappa^{a*}_{xy} show very weak signals at low fields and rather large values with sign change at high fields. This may point to a possible magnetic structure transition or the change of the magnon band topology that induces a radical change of magnon Berry curvature distribution before entering the spin polarized state. These results put clear constraints on the high-field phase and the theoretical models for Na2_2Co2_2TeO6_6.Comment: 7 pages, 4 figure

    Research on the Application of Cross-Specialty Education and Situational Simulation Teaching in Operation Nursing Practice Teaching

    Get PDF
    Objective To examine the practical effect of inter-professional education and situational simulation teaching implemented in surgical nursing practice teaching. Methods On the whole, 100 undergraduate nursing students in the operating room of the hospital of the authors from May 2019 to August 2020 were selected. These students fell to two groups with the random number table method. The control received the regular teaching, and the research group were given the interprofessional education and context. The Simulation teaching was conducted to compare the theoretical knowledge, skill level, various abilities of the two groups of students, as well as the satisfaction of the operating room doctors to the nursing cooperation of the interns. Results The research group achieved higher theoretical knowledge and a higher skill level than the control (p < 0.05); the various abilities of the research group were higher than those of the control (p < 0.05); the operating room doctors of the research group were more satisfied with the nursing cooperation of interns, as compared with those of the control (p < 0.05). Conclusion In the surgical nursing practice teaching, the inter-professional education and the situational simulation teaching have significant effects and are worth clinical applications

    Effect of pyrolysis condition on the adsorption mechanism of heavy metals on tobacco stem biochar in competitive mode

    Get PDF
    Abstract(#br)To clarify the adsorption mechanism of multi-ions on biochars in competitive environment is very important for the decontamination of co-existed heavy metals. Herein, tobacco stem was pyrolyzed in different temperatures with selected residences to obtain biochars with various surface chemistry. Then the adsorption of co-existed typical heavy-metal ions like lead, cadmium, and copper was studied, followed with systematic analysis of surface properties of the post-adsorption biochars. After carefully examining the adsorption performance and surface property alteration of the demineralized biochars, the adsorption mechanism of multi-ions in competitive environment was discovered. Lead showed the most competitive nature with co-existence of cadmium and copper, but the adsorption..

    [Fe(CN)6] vacancy-boosting oxygen evolution activity of Co-based Prussian blue analogues for hybrid sodium-air battery

    Get PDF
    Prussian blue analogues (PBAs) have emerged as efficient catalysts for oxygen evolution reaction (OER) due to their porous structure with well-dispersed active sites. However, Co-based PBA (Co-PBA) electrocatalysts are characterized by moderate OER kinetics. In this study, we developed a facile high-yield strategy to fabricate defective Co-PBA (D-Co-PBA) with [Fe(CN)6] vacancies and exposed Co (III) active sites by post-oxidation treatment of the pristine Co-PBA with aqueous H2O2. Rietveld refinement results show that the lattice parameter (a) and unit-cell volume (V) of D-Co-PBA are smaller than those of the pristine Co-PBA, thereby confirming the generation of [Fe(CN)6] vacancies. Density functional theory calculations reveal that the [Fe(CN)6] vacancy can effectively regulate the electronic structure of D-Co-PBA; this condition reduces the reaction barrier of the rate-determining step toward OER. In OER, the D-Co-PBA catalyst achieves a lower overpotential of 400 mV at a current density of 10 mA cmāˆ’2, which is superior to that of Ir/C (430 mV) and Co-PBA (450 mV). A hybrid sodium-air battery assembled with Pt/C and D-Co-PBA catalysts displays a discharge voltage of 2.75 V, an ultralow chargingā€“discharging gap of 0.15 V, and a round-trip efficiency of 94.83% on the 1000th cycle at the current density of 0.01 mA cm-2. This study is highly promising for large-scale production of affordable and effective PBA-based materials with desirable OER activity for metal-air batteries and water-alkali electrolyzers, thus helping achieve the goal of sustainability

    Effects of oat (Avena sativa L.) hay diet supplementation on the intestinal microbiome and metabolome of Small-tail Han sheep

    Get PDF
    Supplementation of the sheep diet with oats (Avena sativa L.) improves animal growth and meat quality, however effects on intestinal microbes and their metabolites was not clear. This study aimed to establish the effect of dietary oat supplementation on rumen and colonic microbial abundance and explore the relationship with subsequent changes in digesta metabolites. Twenty Small-tail Han sheep were randomly assigned to a diet containing 30 g/100 g of maize straw (Control) or oat hay (Oat). After 90-days on experimental diets, rumen and colon digesta were collected and microbial diversity was determined by 16S rRNA gene Illumina NovaSeq sequencing and metabolomics was conducted using Ultra-high performance liquid chromatography Q-Exactive mass spectrometry (UHPLC-QE-MS). Compared to Control group, oat hay increased the abundance of Bacteroidetes and Fibrobacteres as well as known short-chain fatty acid (SCFA) producers Prevotellaceae, Ruminococcaceae and Fibrobacteraceae in rumen (p &lt; 0.05). In rumen digesta, the Oat group showed had higher levels of (3Z,6Z)-3,6-nonadienal, Limonene-1,2-epoxide, P-tolualdehyde, and Salicylaldehyde compared to Control (p &lt; 0.05) and these metabolites were positively correlated with the abundance of cecal Prevotellaceae NK3B31. In conclusion, supplementation of the sheep diet with oat hay improved desirable microbes and metabolites in the rumen, providing insight into mechanisms whereby meat quality can be improved by oat hay supplementation

    Dental resin monomer enables unique NbO2/carbon lithiumā€ion battery negative electrode with exceptional performance

    Get PDF
    Niobium dioxide (NbO2) features a high theoretical capacity and an outstanding electron conductivity, which makes it a promising alternative to the commercial graphite negative electrode. However, studies on NbO2 based lithium-ion battery negative electrodes have been rarely reported. In the present work, NbO2 nanoparticles homogeneously embedded in a carbon matrix are synthesized through calcination using a dental resin monomer (bisphenol A glycidyl dimethacrylate, Bis-GMA) as the solvent and a carbon source and niobium ethoxide (NbETO) as the precursor. It is revealed that a low Bis-GMA/NbETO mass ratio (from 1:1 to 1:2) enables the conversion of Nb (V) to Nb (IV) due to increased porosity induced by an alcoholysis reaction between the NbETO and Bis-GMA. The as-prepared NbO2/carbon nanohybrid delivers a reversible capacity of 225 mAh gāˆ’1 after 500 cycles at a 1 C rate with a Coulombic efficiency of more than 99.4% in the cycles. Various experimental and theoretical approaches including solid state nuclear magnetic resonance, ex situ X-ray diffraction, differential electrochemical mass spectrometry, and density functional theory are utilized to understand the fundamental lithiation/delithiation mechanisms of the NbO2/carbon nanohybrid. The results suggest that the NbO2/carbon nanohybrid bearing high capacity, long cycle life, and low gas evolution is promising for lithium storage applications
    • ā€¦
    corecore