11,277 research outputs found

    Geoarchaeological evidence of the AD 1642 Yellow River flood that destroyed Kaifeng, a former capital of dynastic China

    No full text
    Rising global temperatures will increase the number of extreme weather events, creating new challenges for cities around the world. Archaeological research on the destruction and subsequent reoccupation of ancient cities has the potential to reveal geological and social dynamics that have historically contributed to making urban settings resilient to these extreme weather events. Using a combination of archaeological and geological methods, we examine how extreme flood events at Kaifeng, a former capital of dynastic China, have shaped the city’s urban resilience. Specifically, we focus on an extreme Yellow River flood event in AD 1642 that historical records suggest killed around 300,000 people living in Kaifeng. Our recent archaeological excavations have discovered compelling geological and archaeological evidence that corroborates these documents, revealing that the AD 1642 Yellow River flood destroyed Kaifeng’s inner city, entombing the city and its inhabitants within meters of silt and clay. We argue that the AD 1642 flood was extraordinarily catastrophic because Kaifeng’s city walls only partly collapsed, entrapping most of the flood waters within the city. Both the geology of the Yellow River floods as well as the socio-political context of Kaifeng shaped the city’s resilience to extreme flood events

    Ozone Depletion from Nearby Supernovae

    Get PDF
    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova must occur at <8 pc. Based on the latest data, the time-averaged galactic rate of core-collapse supernovae occurring within 8 pc is ~1.5/Gyr. In comparing our calculated ozone depletions with those of previous studies, we find them to be significantly less severe than found by Ruderman (1974), and consistent with Whitten et al. (1976). In summary, given the amplitude of the effect, the rate of nearby supernovae, and the ~Gyr time scale for multicellular organisms on Earth, this particular pathway for mass extinctions may be less important than previously thought.Comment: 24 pages, 4 Postscript figures, to appear in The Astrophysical Journal, 2003 March 10, vol. 58

    Theory for superconductivity in (Tl,K)Fex_xSe2_2 as a doped Mott insulator

    Full text link
    Possible superconductivity in recently discovered (Tl,K)Fex_xSe2_2 compounds is studied from the viewpoint of doped Mott insulator. The Mott insulating phase is examined to be preferred in the parent compound at x=1.5x=1.5 due to the presence of Fe vacancies. Partial filling of vacancies at the Fe-sites introduces electron carriers and leads to electron doped superconductivity. By using a two-orbital Hubbard model in the strong coupling limit, we find that the s-wave pairing is more favorable at small Hund's coupling, and dx2−y2_{x^2-y^2} wave pairing is more favorable at large Hund's coupling.Comment: 4+ pages, 3 figures, to appear in EP

    A new approach to bulk viscosity in strange quark matter at high densities

    Full text link
    A new method is proposed to compute the bulk viscosity in strange quark matter at high densities. Using the method it is straightforward to prove that the bulk viscosity is positive definite, which is not so easy to accomplish in other approaches especially for multi-component fluids like strange quark matter with light up and down quarks and massive strange quarks.Comment: 7pages, talk given in SQM2008. Minor revisions, including clarification and updated reference

    Evidence for Frame-Dragging Around Spinning Black Holes in X-Ray Binaries

    Full text link
    In the context of black hole spin in X-ray binaries, we propose that certain type of quasi-period oscillations (QPOs) observed in the light curves of black hole binaries (BHBs) are produced by X-ray modulation at the precession frequency of accretion disks, due to relativistic dragging of inertial frames around spinning black holes. These QPOs tend to be relatively stable in their centroid frequencies. They have been observed in the frequency range of a few to a few hundred Hz for several black holes with dynamically determined masses. By comparing the computed disk precession frequency with that of the observed QPO, we can derive the black hole angular momentum, given its mass. When applying this model to GRO J1655-40, GRS 1915+105, Cyg X-1, and GS 1124-68, we found that the black holes in GRO J1655-40 and GRS 1915+105, the only known BHBs that occasionally produce superluminal radio jets, spin at a rate close to the maximum limit, while Cyg X-1 and GS 1124-68, typical (persistent and transient) BHBs, contain only moderately rotating ones. Extending the model to the general population of black hole candidates, the fact that only low-frequency QPOs have been detected is consistent with the presence of only slowly spinning black holes in these systems. Our results are in good agreement with those derived from spectral data, thus strongly support the classification scheme that we proposed previously for BHBs.Comment: new title, minor revisions; change title to conform to ApJL rules; replaced with the updated version to avoid confusio

    Robust constrained model predictive control based on parameter-dependent Lyapunov functions

    Get PDF
    The problem of robust constrained model predictive control (MPC) of systems with polytopic uncertainties is considered in this paper. New sufficient conditions for the existence of parameter-dependent Lyapunov functions are proposed in terms of linear matrix inequalities (LMIs), which will reduce the conservativeness resulting from using a single Lyapunov function. At each sampling instant, the corresponding parameter-dependent Lyapunov function is an upper bound for a worst-case objective function, which can be minimized using the LMI convex optimization approach. Based on the solution of optimization at each sampling instant, the corresponding state feedback controller is designed, which can guarantee that the resulting closed-loop system is robustly asymptotically stable. In addition, the feedback controller will meet the specifications for systems with input or output constraints, for all admissible time-varying parameter uncertainties. Numerical examples are presented to demonstrate the effectiveness of the proposed techniques

    Plant microRNAs in larval food regulate honeybee caste development

    Get PDF
    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution

    Competitions of magnetism and superconductivity in FeAs-based materials

    Full text link
    Using the numerical unrestricted Hartree-Fock approach, we study the ground state of a two-orbital model describing newly discovered FeAs-based superconductors. We observe the competition of a (0,π)(0, \pi) mode spin-density wave and the superconductivity as the doping concentration changes. There might be a small region in the electron-doping side where the magnetism and superconductivity coexist. The superconducting pairing is found to be spin singlet, orbital even, and mixed sxy_{xy} + dx2−y2_{x^{2}-y^{2}} wave (even parity).Comment: 5 pages, 3 figure

    Development of Shanghai satellite laser ranging station

    Get PDF
    The topics covered include the following: improvement of the system hardware; upgrading of the software; the observation status; preliminary daylight tracking capability; testing the new type of laser; and future plans
    • …
    corecore