385 research outputs found

    Extended Molecular Gas Reservoirs are common in a distant galaxy cluster

    Get PDF
    This presentation was delivered by Zhengyi Chen at the "FIRST STRUCTURES IN THE UNIVERSE 2023" workshop in Paris. The original abstract for this presentation is as follows: "It is clear that galaxies in local clusters are different from those in the field. Environment must play an important role in shaping the ensemble of galaxies. However, we do not yet know when these physical processes are initiated and what mechanisms directly impact how galaxies evolve. We are using the Australian Telescope Compact Array (ATCA) to study the role of environment on the molecular gas content, the fuel of star formation, of distant, star- forming galaxies. These massive, heavily dust obscured sources are the likely progenitors of elliptical galaxies which dominate the light in local galaxy clusters. The cold molecular gas is the most direct ingredient of star-formation, and is commonly traced by carbon monoxide (CO). Galaxy protoclusters, where circumgalactic medium (CGM) is accreting to the web nodes through the filaments, are ideal laboratories to study the galaxy-CGM co-evolution characterized by inflow (e.g., gas accretion and recycle) and outflow processes. Within the ATCA large program COALAS (CO ATCA Legacy Archive of Star-forming Galaxies), we searched - via the ground-transition CO(1-0) - for cold molecular gas emission in the Spi- derweb galaxy protocluster, surrounding the radio galaxy MRC1138-262. We obtained a robust sample of several dozen CO(1-0) detections physically related to the targeted galaxy cluster in formation. This is the largest sample of molecular gas measurements in a distant cluster to date. Through a pilot study, we discovered two massive extended CO gas reser- voirs (40 and 70 kpc large) in the Spiderweb protocluster. We speculate that such gigantic molecular-phase CGM could be an important driver for the built-up of massive galaxies in large scale structures. Triggered by our findings and aiming to test our hypothesis, we started the first systematic search for extended CGM within the 46 CO emitters physically related to the Spiderweb protocluster. In our contribution, we will introduce the method we used for searching, discuss the frequency of this phenomena, study the environmental impact, compare it with the literature and conclude on the mass assembly in large scale structures.

    The substructure and halo population of the Double Cluster hh and χ\chi Persei

    Full text link
    In order to study the stellar population and possible substructures in the outskirts of Double Cluster hh and χ\chi Persei, we investigate using the GAIA DR2 data a sky area of about 7.5 degrees in radius around the Double Cluster cores. We identify member stars using various criteria, including their kinematics (viz, proper motion), individual parallaxes, as well as photometric properties. A total of 2186 member stars in the parameter space were identified as members. Based on the spatial distribution of the member stars, we find an extended halo structure of hh and χ\chi Persei, about 6 - 8 times larger than their core radii. We report the discovery of filamentary substructures extending to about 200 pc away from the Double Cluster. The tangential velocities of these distant substructures suggest that they are more likely to be the remnants of primordial structures, instead of a tidally disrupted stream from the cluster cores. Moreover, the internal kinematic analysis indicates that halo stars seems to be experiencing a dynamic stretching in the RA direction, while the impact of the core components is relatively negligible. This work also suggests that the physical scale and internal motions of young massive star clusters may be more complex than previously thought.Comment: 9 pagges, 9 figures, Accecpted to A&

    Effects of temperature on photosynthetic performance and nitrate reductase activity in vivo assay in Gracilariopsis lemaneiformis (Rhodophyta)

    Get PDF
    Gracilariopsis lemaneiformis is an economically-valued species and widely cultured in China at present. After being acclimated to different growth temperatures (15, 20, 25, and 30 degrees C) for 7 days, the relative growth rate (RGR), nitrate reductase activity, soluble protein content and chlorophyll a fluorescence of G. lemaneiformis were examined. Results show that RGR was markedly affected by temperature especially at 20 degrees C at which G. lemaneiformis exhibited the highest effective quantum yield of PSII [Y(II)] and light-saturated electron transport rate (ETRmax), but the lowest non-photochemical quenching. Irrespective of growth temperature, the nitrate reductase activity increased with the incubation temperature from 15 to 30 degrees C. In addition, the greatest nitrate reductase activity was found in the thalli grown at 20 degrees C. The value of temperature coefficient Q10 of alga cultured in 15 degrees C was the greatest among those of other temperatures tested. Results indicate that the optimum temperature for nitrate reductase synthesis was relatively lower than that for nitrate reductase activity, and the relationship among growth, photosynthesis, and nitrate reductase activity showed that the optimum temperature for activity of nitrate reductase in vivo assay should be the same to the optimal growth temperature

    Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu-7Cr-0.1Ag in situ composites

    Get PDF
    The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu-7Cr-0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu-7Cr-0.1Ag alloys with different growth rates. At a growth rate of 200 μm s-1, the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu-7Cr-0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu-7Cr-0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s-1 and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS

    3,9-Di-tert-butyl-2,4,8,10-tetra­oxaspiro­[5.5]undeca­ne

    Get PDF
    The title compound, C15H28O4, was prepared by the condensation of pivalaldehyde with penta­erythritol. In the crystal, the two halves of the mol­ecule are related by a crystallographic twofold rotation axis passing through the central spiro-C atom. The two non-planar six-membered heterocycles both adopt chair conformations with the two tert-butyl groups both located in the equatorial positions

    Activation of Protein Serine/Threonine Phosphatase PP2Cα Efficiently Prevents Liver Fibrosis

    Get PDF
    Over-activation of TGFβ signaling pathway and uncontrolled cell proliferation of hepatic stellate cells (HSCs) play pivotal roles in liver fibrogenesis, while the protein serine/threonine phosphatase PP2Cα was reported to negatively regulate TGFβ signaling pathway and cell cycle. Our study aimed to investigate the role of PP2Cα in liver fibrogenesis.The effects of PP2Cα activation on liver fibrosis were investigated in human HSCs and primary rat HSCs in vitro using western blotting, real-time PCR, nuclear translocation, cell viability and cell cycle analyses. The antifibrogenic effects in carbon tetrachloride (CCl(4))- and bile duct ligation (BDL)-induced mice in vivo were assessed using biochemical, histological and immunohistochemical analyses. The results demonstrated that activation of PP2Cα by overexpression or the new discovered small molecular activator NPLC0393 terminated TGFβ-Smad3 and TGFβ-p38 signaling pathways, induced cell cycle arrest in HSCs and decreased α-smooth muscle actin (α-SMA) expression, collagen deposition and hepatic hydroxyproline (HYP) level in CCl(4)- and BDL-induced mice.Our findings suggested that PP2Cα activation might be an attractive new strategy for treating liver fibrosis while the small molecular activator NPLC0393 might represent a lead compound for antifibrogenic drug development. Moreover, our study might provide the first evidence for the role of PP2C family members in the fibrotic disease

    Robust Classification via a Single Diffusion Model

    Full text link
    Recently, diffusion models have been successfully applied to improving adversarial robustness of image classifiers by purifying the adversarial noises or generating realistic data for adversarial training. However, the diffusion-based purification can be evaded by stronger adaptive attacks while adversarial training does not perform well under unseen threats, exhibiting inevitable limitations of these methods. To better harness the expressive power of diffusion models, in this paper we propose Robust Diffusion Classifier (RDC), a generative classifier that is constructed from a pre-trained diffusion model to be adversarially robust. Our method first maximizes the data likelihood of a given input and then predicts the class probabilities of the optimized input using the conditional likelihood of the diffusion model through Bayes' theorem. Since our method does not require training on particular adversarial attacks, we demonstrate that it is more generalizable to defend against multiple unseen threats. In particular, RDC achieves 73.24%73.24\% robust accuracy against ℓ∞\ell_\infty norm-bounded perturbations with ϵ∞=8/255\epsilon_\infty=8/255 on CIFAR-10, surpassing the previous state-of-the-art adversarial training models by +2.34%+2.34\%. The findings highlight the potential of generative classifiers by employing diffusion models for adversarial robustness compared with the commonly studied discriminative classifiers

    rac-3,9-Bis(3-chloro­phen­yl)-2,4,8,10-tetra­oxaspiro­[5.5]undeca­ne

    Get PDF
    In the title compound, C19H18Cl2O4, the two non-planar six-membered heterocycles passing through the spiro-C atom both adopt chair conformations, and the dihedral angle between the two benzene rings is 7.2 (1)°. In the crystal, the enanti­omers with R and S configurations are generated by the symmetry elements of the centrosymmetric space group, forming a racemic crystal. Inter­molecular C—H⋯π and weak C—H⋯O inter­actions link the mol­ecules in the crystal structure
    • …
    corecore