Extended Molecular Gas Reservoirs are common in a distant galaxy cluster

Submitted to MNRAS

Zhengyi Chen (Nanjing University, China; Instituto de Astrofísica de Canarias, Spain) Collaborators: H. Dannerbauer, M. Lehnert, B. Emonts, Q. Gu & ATCA Spiderweb Protocluster Team

First Structure 2023 @ Paris 2023.09.06

Universidad de La Laguna

Motivation:

Large/Extended Molecular Gas Reservoir Discoveries (Rare)

Galaxy - CGM/IGM interplay Navigating Complexity: Zooming In on Our Area of Interest

Galaxy - CGM/IGM interplay Navigating Complexity: Zooming In on Our Area of Interest Molecular gas (H2): Galaxy-surrounding medium Interplay is multiple folded the direct fuel of starformation in galaxies 1. multiple processes 1. Inflow: accretion; recycling, etc 2. Outflow: AGN driven; SN driven: etc 3. mergers **B-B** 2. multiple medium phases PAH; 1. **M-**M 15 kpc 2. atomic; 3. molecular: 4. ionised multiple scales 3. ~kpc. 1. 300 kpc **Tracer:** C I O tens of kpc; (Tumlinson+2017) 3. hundreds of kpc: Multiple Physical Process Scale: ≥ 40 kpc Behind: A Complex Topic Inspired by Unveiled Extended Molecular Gas Reservoirs

Unraveling Environmental Effects on various mechanisms: Comparing (Proto)cluster and Field Galaxies to Probe Probable Impacts

(Introduced in Previous Slide)

Physical Scope: CGM, IGM, etc

- Exploring Cold Molecular Gas in both (Proto)cluster and Field Environments

Focus located. Next Step: The Sample & Data???

- Exploring Cold Molecular Gas in both (Proto)cluster and Field Environments

- Exploring Cold Molecular Gas in both (Proto)cluster and Field Environments

Previous talk by Helmut Dannerbauer

ATCA Large Program COALAS CO(1-0) survey (C3181, PI: H. Dannerbauer)

COALAS (CO ATCA Legacy Archive of Star-Forming Galaxies; ~800 hrs.): ATCA observation of CO(1-0) transitions in protocluster (Spiderweb) & field galaxies at z~2.

Offer the opportunity to constrain environmental effects

This Work: the Spiderweb Protocluster.

Exclusive Southern Capabilities: Pre-ALMA Cycle 10 Band 1 Launch, ATCA Stands as the ONLY Southern Hemisphere Facility for CO(1-0) Targeting at z^2 .

- Exploring Cold Molecular Gas in both (Proto)cluster and Field Environments

Methodology: Novel Approach Developed via Coarse and High-Resolution Observational Data Comparison

Methodology: Novel Approach Developed via Coarse and High-Resolution Observational Data Comparison

Methodology: Novel Approach Developed via Coarse and High-Resolution Observational Data Comparison

The core of the method: morphological and kinematical based sizes assessment (collapsed images + position-velocity diagram) **Collapsed Images** position-velocity diagram **Example on DKB03** 300 PVD -- Pseudo-slit I PVD -- Pseudo-slit II (H)**Collapsed Image** 200 200 100 100 /elocity (km/s) ocity (km/s) Coarse Data 0 0 (low-resolution) **Common Features:** -100 -100 large size of collapsed image; -200 -200 2. multiple velocity components and -10velocity gradients on position--300 -300 10 -6 -4 _1 -3 -2 -10-5 -2 0 $^{-1}$ 0 RA (arcsec) Offset (arcsec) Offset (arcsec velocity diagrams To confirm our assessment - large molecular gas reservoir more details to be discussed follow-up observations are conducted. Coarse Data Unveils Extended Gas 300 Collapsed Image Features, Despite Reduced 10 200 200 Resolution and Detail Compared to 100 100 High-Resolution Data. Velocity (km/s) ocity (km/s) High-Resolution 0 @ Jarcsec _____. ≥ __100 . -100-200 -200 -10PVD -- Pseudo-slit PVD -- Pseudo-slit I -300 -300 -10-5 0 10 ò 2 -1 ò RA (arcsec) Offset (arcsec)

Unlocking Potential with Coarse Observations: Filtering Extended Gas Reservoirs, Less Time, Broader Spatial Range—Beyond Cluster Center Pointings!

Binary Criteria Ranking Evaluation: Six Criteria Incorporating Source Characteristics and Observational Conditions (each 1–2 bits, i.e., 2–4 classes), Followed by Ranking Using Converted Decimal Values for Each CO emitters

Binary Criteria Ranking Evaluation: Six Criteria Incorporating Source Characteristics and Observational Conditions (each 1–2 bits, i.e., 2–4 classes), Followed by Ranking Using Converted Decimal Values for Each CO emitters

Results I. Widespread Presence of Extended Gas Reservoirs

21 Extended Gas Reservoir Candidates
14 Robust Candidates
7 Tentative Candidates

The rate of cluster members containing

large gas reservoirs is ~30% (14/46), and up to ~50% (21/46) if including the tentative candidates.

Extended Molecular Gas Reservoirs: Surprisingly Prevalent, Often Overlooked in Prior Studies (Further Discussion in Later Slides)

Results II. Distribution Patterns: Extended Gas Reservoirs Show Preference for Denser Regions

Results II. Distribution Patterns: Extended Gas Reservoirs Show Preference for Denser Regions

Discussion I. Exploring Gas Reservoir Gaps: Ground-transition of CO is Crucial

Protocluster	redshift	Source ID	Emission Lines	Size	Size Given	Reference	
Jackpot nebular	2.04	galaxy1	CO(3-2)	~40 kpc -		Decarli et al. 2021	
PKS1138-262 Protocluster	2.16	Spiderweb Galaxy	CO(1-0)	~70 kpc Yes		Emonts et al. (2013, 2014, 2016, 2018)	
(Spiderweb)			CO(4-3)	~50 kpc Yes		Emonts et al. (2018)	
			[CI]	~50 kpc	Yes	Emonts et al. (2018)	
		HAE229	CO(1-0)	~40 kpc	Yes	Dannerbauer et al. (2017)	
Protocluster ELANe	2.22	QSO Q12287+3128	CO(4-3)	~100 kpc	Yes	Li et al. (2021b, 2023)	
Slug nebular	2.28	QSO	CO(3-2)	~50 kpc	-	Decarli et al. (2021)	
BOSS1441 Protocluster	2.3	Region A (Q0052)	CO(1-0)	~40 kpc -		Emonts et al. (2019)	
(MAMMOTH-I)			CO(3-2)	$\lesssim 15 \text{ kpc}$ -		Li et al. (2021a)	
			CO(4-3)	$\lesssim 15 \text{ kpc}$	-	Li et al. (2023)	
CLJ1001 Protocluster	2.5	131077	CO(1-0)	$\lesssim 40 \text{ kpc}$	Yes	Champagne et al. (2021)	
			CO(3-2)	$\lesssim 10 \text{ kpc}$	-	Champagne et al. (2021)	
			CO(1-0)	~30 kpc	-	Wang et al. (2016)	
			CO(5-4)	~30 kpc	-	Wang et al. (2016)	
		130933	CO(1-0)	~60 kpc	-	Wang et al. (2018)	
		130842	CO(1-0)	~60 kpc	-	Wang et al. (2018)	
HXMM20 Protocluster	2.6	SO	CO(1-0)	~45 kpc	-	Gómez-Guijarro et al. (2019)	
			CO(3-2)	~30 kpc	-	Gómez-Guijarro et al. (2019)	
		S2	CO(1-0)	~40 kpc	-	Gómez-Guijarro et al. (2019)	
			CO(3-2)	~30 kpc	-	Gómez-Guijarro et al. (2019)	
		S 3	CO(1-0)	~40 kpc	-	Gómez-Guijarro et al. (2019)	
			CO(3-2)	~30 kpc	-	Gómez-Guijarro et al. (2019)	
SSA22 Protocluster	3.1	LAB1	[CII]	~50 kpc	-	Umehata et al. (2017, 2021)	
			CO(4-3)	~30 kpc	-	Umehata et al. (2021)	
HZ10 Protocluster	5.7	massive dusty starburst	CO(2-1)	~40 kpc	_	Pavesi et al. (2018)	

14 Potential Extended Source From Literature.

Discussion I. Exploring Gas Reservoir Gaps: Ground-transition of CO is Crucial

Protocluster redshi		Source ID	Emission Lines	Size Size Giver		Reference			
Jackpot nebular	2.04	galaxy1	CO(3-2)	~40 kpc	-	Decarli et al. 2021			
PKS1138-262 Protocluster	2.16	Spiderweb Galaxy	CO(1-0)	~70 kpc	Yes	Emonts et al. (2013, 2014, 2016, 2	.018)		
(Spiderweb)			CO(4-3)	~50 kpc	Yes	Emonts et al. (2018)			
			[CI]	~50 kpc	Yes	E			
		HAE229	CO(1-0)	~40 kpc	Yes	Extended in (CO(1-0	o) emission wh	ile
Protocluster ELANe	2.22	QSO Q12287+3128	CO(4-3)	~100 kpc	Yes	compact for 1	vioher	transitions	
Slug nebular	2.28	QSO	CO(3-2)	~50 kpc	-		Juci		
BOSS1441 Protocluster	2.3	Region A (Q0052)	CO(1-0)	~40 kpc	-	Emonts et al. (2019)			
(MAMMOTH-I)			CO(3-2)	$\lesssim 15 \text{ kpc}$	-	Li et al. (2021a)		Example T	
			CO(4-3)	$\lesssim 15 \text{ kpc}$	-	Li et al. (2023)			
CLJ1001 Protocluster	2.5	131077	CO(1-0)	$\lesssim 40 \text{ kpc}$	Yes	Champagne et al. (2021)	•	Example IT	
			CO(3-2)	$\lesssim 10 \text{ kpc}$	-	Champagne et al. (2021)		example II	
			CO(1-0)	~30 kpc		Wang et al. (2016)			
			CO(5-4)	~30 kpc	-	Wang et al. (2016)			
		130933	CO(1-0)	~60 kpc	-	Wang et al. (2018)	-	ID1 CO(1-0)	
		130842	CO(1-0)	~60 kpc	-	Wang et al. (2018)		Z=Z.494 CO(3-Z)	
HXMM20 Protocluster	2.6	S0	CO(1-0)	~45 kpc	-	Gómez-Guijarro et al. (2019)	1		
			CO(3-2)	~30 kpc	-	Gómez-Guijarro et al. (2019)	-		
		S2	CO(1-0)	~40 kpc	-	Gómez-Guijarro et al. (2019)			
			CO(3-2)	~30 kpc	-	Gómez-Guijarro et al. (2019)			
		S3	CO(1-0)	~40 kpc	-	Gómez-Guijarro et al. (2019)			
			CO(3-2)	~30 kpc	-	Gómez-Guijarro et al. (2019)	1		6
SSA22 Protocluster	3.1	LAB1	[CII]	~50 kpc	-	Umehata et al. (2017, 2021)			
			CO(4-3)	~30 kpc	-	Umehata et al. (2021)		5" (41 kpc)	
HZ10 Protocluster	5.7	massive dusty starburst	CO(2-1)	~40 kpc	-	Pavesi et al. (2018)			

14 Potential Extended Source From Literature.

Previous talk by Jaclyn Champagne

Discussion II. Galaxy-CGM/IGM Interplay Large gas reservoirs in SW protocluster may contribute to the future CGM in Virgo-like galaxy cluster

The Spiderweb Protocluster has ABUNDANT gas (also mentioned in previous talk by Jaclyn Champagne) The following estimation focus on ONLY on Extended Gas Reservoirs

- 1. Molecular gas derivation equation: $M_{gas} = \alpha L'_{CO}$
 - Star-forming mode: $\alpha \equiv 4.6 M_{\odot} (Kkms^{-1}pc^2)^{-1}$
 - Starburst mode: $\alpha \equiv 0.8 M_{\odot} (Kkms^{-1}pc^2)^{-1}$
- 2. Total (large gas reservoir) molecular gas in Spiderweb protocluster
 - Assume pure star-forming mode: $8.7 \times 10^{13} M_{\odot}$ (large gas reservoirs: $2.0 \times 10^{13} M_{\odot}$)
 - Assume pure starburst mode: $1.5 \times 10^{13} M_{\odot}$ (large gas reservoirs: $3.5 \times 10^{12} M_{\odot}$)
- 3. ICM in Virgo galaxy cluster: ~ $3 \times 10^{14} M_{\odot}$ (Sparke & Gallagher 2007)
- 4. Consider a low molecular-to-atomic ratio (~ 0.1; Saintonge+2017; Catinella+2018), and under simple starforming mode assumption, the large gas reservoirs in Spiderweb protocluster may be enough to contribute the CGM in a future Virgo-like galaxy cluster (e.g., through "truncation" process).

* "truncation" process: galaxy-galaxy encounter or gravitational interactions between galaxies and the (proto)cluster environment can result in the distortion, stripping, and truncation of galaxy halos (Moore+96,98; Fujita 98)

Discussion II. Galaxy-CGM/IGM Interplay

Unveiling the Rationale Behind Extended Gas Reservoirs: Their Origin and Maintenance?

Calculating Dynamical Time: The Timescale over Which Extended Gas Reservoirs May Persist

- <u>Assumption</u>: angular momentum resembles that of a rotating-like system
- <u>Timescale</u>: $t_{orbital} \sim 1.2 \text{ Gyr} (r/40 \text{ kpc}) / (v_{orb}/200 \text{ km s}^{-1})$
- <u>Explanation</u>: The gas cannot inspire into the galaxy potential, through tidal effects due to bars or spiral arms or other disk substructures in less than a dynamical time
- <u>Reasoning</u>: this suggest that these extended gas reservoirs of molecular gas could be long lived if not disrupted by *external force* (e.g., ram pressure stripping, tidal stripping by passing/merging gas, etc). Furthermore, if the extended gas is stable, it can fuel the future growth of these proto-cluster galaxies for a long time, at least 1 Gyr (the star-formation in the galaxies won't stop even if the gas accretion has ceased).

Calculating Dynamical Time for "External Force": crossing/infall time time of galaxies

 <u>Timescale</u>: t_{crossing} ~ 1 Gyr (r/Mpc)/(v_{infall}/1000 km s⁻¹)

Comparable Timescales (order-of-magnitude). A Paradox? Are Extended Gas Reservoirs Unexpected? An open question need to be solved with further observations...

Discussion II. Galaxy-CGM/IGM Interplay

Unveiling the Rationale Behind Extended Gas Reservoirs: Their Origin and Maintenance?

Calculating Dynamical Time: The Timescale over Which Extended Gas Reservoirs May Persist

- <u>Assumption</u>: angular momentum resembles that of a rotating-like system
- <u>Timescale</u>: $t_{orbital} \sim 1.2 \text{ Gyr} (r/40 \text{ kpc}) / (v_{orb}/200 \text{ km s}^{-1})$
- <u>Explanation</u>: The gas cannot inspire into the galaxy potential, through tidal effects due to bars or spiral arms or other disk substructures in less than a dynamical time
- <u>Reasoning</u>: this suggest that these extended gas reservoirs of molecular gas could be long lived if not disrupted by *external force* (e.g., ram pressure stripping, tidal stripping by passing/merging gas, etc). Furthermore, if the extended gas is stable, it can fuel the future growth of these proto-cluster galaxies for a long time, at least 1 Gyr (the star-formation in the galaxies won't stop even if the gas accretion has ceased).

Calculating Dynamical Time for "External Force": crossing/infall time time of galaxies

 <u>Timescale</u>: t_{crossing} ~ 1 Gyr (r/Mpc)/(v_{infall}/1000 km s⁻¹)

If consider that those sources without extended gas reservoirs were stripped of their material, they may have contributed to the gas in the ICM — Supported by Metal-Rich ICM in Nearby Clusters.

The Scenario: Continuous Material Exchange with Surrounding Large Molecular Gas Reservoirs — Fuelled by Outflows from Young Massive Stars, Type Ia SNe, and AGN via Radiation Pressure and Radio Jets.

Ongoing Follow-up Observations

- ATCA C3465 Project (PI: Z. Chen)

- To validate the extended gas reservoir selection using high-resolution data.
- 180 hrs observations finished.

Higher resolution but ensure the extended low-surface-brightness emission detected (relatively compact configuration required; the "missing flux issue")

- ALMA 2023.1.00229.S Project (PI: Z. Chen)

- Utilising higher-transition carbon monoxide (CO) observations for the characterisation of gas properties.
- Approved.

Summary

Method Develop: Criteria Binary Ranking

 Guided by Comparing Coarse and High-Resolution Data, We've Crafted a Binary Ranking System. It Considers Source Characteristics and Observational Conditions, Efficiently Filtering Out Extended Molecular Gas Reservoir Candidates from Coarse Data.

Filtered Out Extended Molecular Gas Reservoir Candidates in the Spiderweb Protocluster

- 14 Robust Candidates + 7 Tentative Candidates.
- The Extended Gas Reservoir is a Prevalent Phenomenon: 30% (50% count in Tentative Candidates).
- Extended Gas Reservoirs Show Preference for Denser Regions.

Previous Studies Might Have Overlooked Potential Large Gas Reservoirs

- Focused Observations: Limited to Central Region of (Proto)clusters;
- Without Ground Transition CO(1-0) Exploration.

Galaxy-IGM/ICM Interplay: The Galaxies has Ongoing Material Exchange with Surrounding Large Molecular Gas Reservoirs Leads to Metal-Enriched Mediums in Local Clusters. - Further Studies needed.

Take Home Messages

- 1. Ubiquitous Extended Molecular Gas Reservoirs in (proto)cluster Environments, Preferring Denser Regions.
- Beyond the Core Regions: Outskirts of (Proto)clusters Deserve Attention Too. Coarse Observations Offer Efficient Coverage for Broader Spatial Areas.
- 3. Exploring Extended Molecular Gas via CO(1-0) Emission.