287 research outputs found

    Effect of Irrigation to Winter Wheat on the Radiation Use Efficiency and Yield of Summer Maize in a Double Cropping System

    Get PDF
    In north China, double cropping of winter wheat and summer maize is a widely adopted agricultural practice, and irrigation is required to obtain a high yield from winter wheat, which results in rapid aquifer depletion. In this experiment conducted in 2001-2002, 2002-2003, and 2004-2005, we studied the effects of irrigation regimes during specific winter wheat growing stage with winter wheat and summer maize double cropping systems; we measured soil moisture before sowing (SMBS), the photosynthetic active radiation (PAR) capture ratio, grain yield, and the radiation use efficiency (RUE) of summer maize. During the winter wheat growing season, irrigation was applied at the jointing, heading, or milking stage, respectively. The results showed that increased amounts of irrigation and irrigation later in the winter wheat growing season improved SMBS for summer maize. The PAR capture ratio significantly (LSD, P < 0.05) increased with increased SMBS, primarily in the 3 spikes leaves. With improved SMBS, both the grain yield and RUE increased in all the treatments. These results indicate that winter wheat should be irrigated in later stages to achieve reasonable grain yield for both crops

    Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis

    Get PDF
    Abstract Background Plant cell walls are mainly composed of polysaccharides such as cellulose and callose. Callose exists at a very low level in the cell wall; however, it plays critical roles at different stages of plant development as well as in defence against unfavorable conditions. Callose is accumulated at the cell plate, at plasmodesmata and in male and female gametophytes. Despite the important roles of callose in plants, the mechanisms of its synthesis and regulatory properties are not well understood. Results CALLOSE SYNTHASE (CALS) genes, also known as GLUCAN SYNTHASE-LIKE (GSL), comprise a family of 12 members in Arabidopsis thaliana. Here, we describe a new allele of GSL8 (named essp8) that exhibits pleiotropic seedling defects. Reduction of callose deposition at the cell plates and plasmodesmata in essp8 leads to ectopic endomitosis and an increase in the size exclusion limit of plasmodesmata during early seedling development. Movement of two non-cell-autonomous factors, SHORT ROOT and microRNA165/6, both required for root radial patterning during embryonic root development, are dysregulated in the primary root of essp8. This observation provides evidence for a molecular mechanism explaining the gsl8 root phenotype. We demonstrated that GSL8 interacts with PLASMODESMATA-LOCALIZED PROTEIN 5, a Ī²-1,3-glucanase, and GSL10. We propose that they all might be part of a putative callose synthase complex, allowing a concerted regulation of callose deposition at plasmodesmata. Conclusion Analysis of a novel mutant allele of GSL8 reveals that GSL8 is a key player in early seedling development in Arabidopsis. GSL8 is required for maintaining the basic ploidy level and regulating the symplastic trafficking. Callose deposition at plasmodesmata is highly regulated and occurs through interaction of different components, likely to be incorporated into a callose biosynthesis complex. We are providing new evidence supporting an earlier hypothesis that GSL8 might have regulatory roles apart from its enzymatic function in plasmodesmata regulation

    Application of statins in management of glioma: Recent advances

    Get PDF
    Gliomas are common primary intra-cerebral tumors in adults, and seriously threaten the health and life of affected patients, especially highly-malignant gliomas, such as glioblastoma multiforme. The clinical prognosis of glioma patients is poor, even for those who have received comprehensive treatment including surgery and concurrent chemo- and/or radio-therapy. As a structural analog of Ī²-hydroxy-Ī²- methylglutaryl coenzyme A (HMG CoA) reductase, statins are a restrictive enzyme in the metabolism of cholesterol. Recent laboratory studies and clinical trials have demonstrated that statins can exert antitumor effect, improve clinical prognosis and significantly prolong the survival time of glioma patients. This article is aimed to highlight the mechanisms of the anti-glioma effect of statins and review recent advances in the management of the disease.Keywords: Glioma, Glioblastoma multiforme, Intra-cerebral tumors, Statins, Prognosis, Survival time, Ī²-Hydroxy-Ī²-methylglutaryl coenzyme A (HMG CoA) reductas

    Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis

    Get PDF
    Abstract Background Plant cell walls are mainly composed of polysaccharides such as cellulose and callose. Callose exists at a very low level in the cell wall; however, it plays critical roles at different stages of plant development as well as in defence against unfavorable conditions. Callose is accumulated at the cell plate, at plasmodesmata and in male and female gametophytes. Despite the important roles of callose in plants, the mechanisms of its synthesis and regulatory properties are not well understood. Results CALLOSE SYNTHASE (CALS) genes, also known as GLUCAN SYNTHASE-LIKE (GSL), comprise a family of 12 members in Arabidopsis thaliana. Here, we describe a new allele of GSL8 (named essp8) that exhibits pleiotropic seedling defects. Reduction of callose deposition at the cell plates and plasmodesmata in essp8 leads to ectopic endomitosis and an increase in the size exclusion limit of plasmodesmata during early seedling development. Movement of two non-cell-autonomous factors, SHORT ROOT and microRNA165/6, both required for root radial patterning during embryonic root development, are dysregulated in the primary root of essp8. This observation provides evidence for a molecular mechanism explaining the gsl8 root phenotype. We demonstrated that GSL8 interacts with PLASMODESMATA-LOCALIZED PROTEIN 5, a Ī²-1,3-glucanase, and GSL10. We propose that they all might be part of a putative callose synthase complex, allowing a concerted regulation of callose deposition at plasmodesmata. Conclusion Analysis of a novel mutant allele of GSL8 reveals that GSL8 is a key player in early seedling development in Arabidopsis. GSL8 is required for maintaining the basic ploidy level and regulating the symplastic trafficking. Callose deposition at plasmodesmata is highly regulated and occurs through interaction of different components, likely to be incorporated into a callose biosynthesis complex. We are providing new evidence supporting an earlier hypothesis that GSL8 might have regulatory roles apart from its enzymatic function in plasmodesmata regulation

    The LDL1/2-HDA6 Histone Modification Complex Interacts With TOC1 and Regulates the Core Circadian Clock Components in Arabidopsis

    Get PDF
    In Arabidopsis, the circadian rhythm is associated with multiple important biological processes and maintained by multiple interconnected loops that generate robust rhythms. The circadian clock central loop is a negative feedback loop composed of the core circadian clock components. TOC1 (TIMING OF CAB EXPRESSION 1) is highly expressed in the evening and negatively regulates the expression of CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL). CCA1/LHY also binds to the promoter of TOC1 and represses the TOC1 expression. Our recent research revealed that the histone modification complex comprising of LYSINE-SPECIFIC DEMETHYLASE 1 (LSD1)-LIKE 1/2 (LDL1/2) and HISTONE DEACETYLASE 6 (HDA6) can be recruited by CCA1/LHY to repress TOC1 expression. In this study, we found that HDA6, LDL1, and LDL2 can interact with TOC1, and the LDL1/2-HDA6 complex is associate with TOC1 to repress the CCA1/LHY expression. Furthermore, LDL1/2-HDA6 and TOC1 co-target a subset of genes involved in the circadian rhythm. Collectively, our results indicate that the LDL1/2-HDA6 histone modification complex is important for the regulation of the core circadian clock components

    Personality Openness Predicts Driver Trust in Automated Driving

    Get PDF
    Maintaining an appropriate level of trust in automated driving (AD) is critical to safe driving. However, few studies have explored factors affecting trust in AD in general, and no study, as far as is known, has directly investigated whether driver personality influences driver trust in an AD system. The current study investigates the relation between driver personality and driver trust in AD, focusing on Level 2 AD. Participants were required to perform a period of AD in a driving simulator, during which their gaze and driving behavior were recorded, as well as their subjective trust scores after driving. In three distinct measures, a significant correlation between Openness and driver trust in the AD system is found: participants with higher Openness traits tend to have less trust in the AD system. No significant correlations between driver trust in AD and other personality traits are found. The findings suggest that driver personality has an impact on driver trust in AD. Theoretical and practical implications of this finding are discussed
    • ā€¦
    corecore