432 research outputs found

    Selective scattering of blue and red light based on silver and gold nanocubes

    Full text link
    Selective scattering of red-, green- and blue-light and transmitting other visible light to achieve transparent projection screen has been proposed recently based on metallic nanoparticle's localized surface plasmon resonance (LSPR). However, dielectric (TiO2) substrate/silver (Ag) nanocube structure was only demonstrated to selectively scatter blue-light in the backward direction. Given human eyes are sensitive to green-light, it is of interest to find out how to achieve selective forward-scattering of blue- and red-light and selective backward-scattering of red-light. In this work, through numerical simulation, forward and backward scattering properties of dielectric substrate/Ag (or gold) nanocube structures are investigated. And based on these properties, three designs are proposed which can achieve selective scattering of blue- and red-light in forward or backward or both directions

    A Hollow Coaxial Cable Fabry-Perot Resonator for Liquid Dielectric Constant Measurement

    Get PDF
    We report, for the first time, a low-cost and robust homemade hollow coaxial cable Fabry-PĂ©rot resonator (HCC-FPR) for measuring liquid dielectric constant. In the HCC design, the traditional dielectric insulating layer is replaced by air. A metal disk is welded onto the end of the HCC serving as a highly reflective reflector, and an open cavity is engineered on the HCC. After the open cavity is filled with the liquid analyte (e.g., water), the air-liquid interface acts as a highly reflective reflector due to large impedance mismatch. As a result, an HCC-FPR is formed by the two highly reflective reflectors, i.e., the air-liquid interface and the metal disk. We measured the room temperature dielectric constant for ethanol/water mixtures with different concentrations using this homemade HCC-FPR. Monitoring the evaporation of ethanol in ethanol/water mixtures was also conducted to demonstrate the ability of the sensor for continuously monitoring the change in dielectric constant. The results revealed that the HCC-FPR could be a promising evaporation rate detection platform with high performance. Due to its great advantages, such as high robustness, simple configuration, and ease of fabrication, the novel HCC-FPR based liquid dielectric constant sensor is believed to be of high interest in various fields

    Machine learning based iterative learning control for non-repetitive time-varying systems

    Full text link
    The repetitive tracking task for time-varying systems (TVSs) with non-repetitive time-varying parameters, which is also called non-repetitive TVSs, is realized in this paper using iterative learning control (ILC). A machine learning (ML) based nominal model update mechanism, which utilizes the linear regression technique to update the nominal model at each ILC trial only using the current trial information, is proposed for non-repetitive TVSs in order to enhance the ILC performance. Given that the ML mechanism forces the model uncertainties to remain within the ILC robust tolerance, an ILC update law is proposed to deal with non-repetitive TVSs. How to tune parameters inside ML and ILC algorithms to achieve the desired aggregate performance is also provided. The robustness and reliability of the proposed method are verified by simulations. Comparison with current state-of-the-art demonstrates its superior control performance in terms of controlling precision. This paper broadens ILC applications from time-invariant systems to non-repetitive TVSs, adopts ML regression technique to estimate non-repetitive time-varying parameters between two ILC trials and proposes a detailed parameter tuning mechanism to achieve desired performance, which are the main contributions

    On Space-Time Trade-Off for Montgomery Multipliers over Finite Fields

    Get PDF
    La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.The multiplication in a Galois field with 2^m elements (i.e. GF(2^m)) is an important arithmetic operation in coding theory and cryptography. In this thesis, we focus on the bit- parallel multipliers over the Galois fields generated by trinomials. We start by introducing the GF(2^m) Montgomery multiplication, which calculates A(x)B(x)x^{-u} in GF(2^m) with two polynomials A(x), B(x) in GF(2^m) and a properly chosen u. Then, we investigate the rule for multiplicand partition used by a divide-and-conquer algorithm PCHS originally proposed for the multiplication over GF(2^m) with odd m. By adopting similar rules for splitting A(x) and B(x) in A(x)B(x)x^{-u}, we develop new Montgomery multiplication formulae for GF(2^m) with m either odd or even. Based on this new approach, we develop the corresponding bit-parallel Montgomery multipliers for the Galois fields generated by trinomials. A new bit-reusing trick is applied to eliminate redundant XOR gates from the new multiplier. The time complexity (i.e. the delay) and the space complexity (i.e. the logic gate number) of the new multiplier are explicitly analysed: 1. This new multiplier is about 25% more efficient in the number of logic gates than the previous trinomial-based Montgomery multipliers or trinomial-based Mastrovito multipliers on GF(2^m) with m big enough. It has a number of logic gates very close to that of the Karatsuba multiplier proposed by Elia. 2. While having a significantly smaller number of logic gates, this new multiplier is at most two T_X larger in the total delay than the fastest bit-parallel multiplier on GF(2^m), where T_X is the XOR gate delay. 3. We determine the space and time complexities of our multiplier on the two fields recommended by the National Institute of Standards and Technology (NIST). Having at most one more T_X in the total delay, our multiplier has a more-than-15% reduced logic gate number compared with the other Montgomery or Mastrovito multipliers. Moreover, our multiplier is one T_X smaller in delay than the Elia's multiplier at the cost of a less-than-1% increase in the logic gate number

    Point-to-point iterative learning control with optimal tracking time allocation: a coordinate descent approach

    No full text
    Iterative learning control (ILC) is a high performance control technique for systems operating in a repetitive manner. A novel design methodology is developed in this paper to incorporate optimal tracking time allocation within the point-to-point ILC framework for discrete time systems. This leads to significant performance improvements compared to fixed time points (e.g. energy reduction). An optimization problem is formulated based on the point-to-point tracking requirement and the via-point temporal constraints. A two stage design framework is proposed to solve this problem, yielding an algorithm based on norm optimal ILC and the coordinate descent method, which automatically minimizes control effort while maintaining high performance tracking. The proposed algorithm is implemented on a gantry robot experimental test platform, with results verifying its practical effectiveness in the presence of model uncertainty

    An Embeddable Strain Sensor with 30 Nano-Strain Resolution based on Optical Interferometry

    Get PDF
    A cost-effective, robust and embeddable optical interferometric strain sensor with nanoscale strain resolution is presented in this paper. The sensor consists of an optical fiber, a quartz rod with one end coated with a thin gold layer, and two metal shells employed to transfer the strain and orient and protect the optical fiber and the quartz rod. The optical fiber endface, combining with the gold-coated surface, forms an extrinsic Fabry—Perot interferometer. The sensor was firstly calibrated, and the result showed that our prototype sensor could provide a measurement resolution of 30 nano-strain (nε) and a sensitivity of 10.01 µε/ µm over a range of 1000 µε. After calibration of the sensor, the shrinkage strain of a cubic brick of mortar in real time during the drying process was monitored. The strain sensor was compared with a commercial linear variable displacement transducer, and the comparison results in four weeks demonstrated that our sensor had much higher measurement resolution and gained more detailed and useful information. Due to the advantages of the extremely simple, robust and cost-effective configuration, it is believed that the sensor is significantly beneficial to practical applications, especially for structural health monitoring

    Review of Fiber Optic Displacement Sensors

    Get PDF
    Displacement Measurements Are of Significant Importance in a Variety of Critical Scientific and Engineering Fields, Such as Gravitational Wave Detection, Geophysical Research, and Manufacturing Industries. Due to the Inherent Advantages Such as Compactness, High Sensitivity, and Immunity to Electromagnetic Interference, in Recent Years, Fiber Optic Sensors Have Been Widely Used in an Expansive Range of Sensing Applications, Ranging from Infrastructural Health Monitoring to Chemical and Biological Sensing. of Particular Interest Here, Fiber Optic Displacement Sensors Have Gained Wide Interest and Have Evolved from Basic Intensity Modulation-Based Configurations to More Advanced Structures, Such as Fiber Bragg Grating (FBG)-Based and Interferometric Configurations. This Article Reviews Specifically the Advanced Fiber Optic Displacement Sensing Techniques that Have Been Developed in the Past Two Decades. Details Regarding the Working Principle, Sensor Design, and Performance Measures of FBG-Based, Interferometers-Based (Including the Fabry-Perot Interferometer, the Michelson Interferometer, and the Multimode Interferometer), Microwave Photonics-Based, and Surface Plasmon Resonance-Based Fiber Optic Displacement Sensors Are Given. Challenges and Perspectives on Future Research in the Development of Practical and High-Temperature Tolerant Displacement Sensors Are Also Discussed

    Distributed Fiber-Optic Pressure Sensor based on Bourdon Tubes Metered by Optical Frequency-Domain Reflectometry

    Get PDF
    We report a distributed fiber-optic pressure sensor based on Bourdon tubes using Rayleigh backscattering metered by optical frequency-domain reflectometry (OFDR). In the proposed sensor, a piece of single-mode fiber (SMF) is attached to the concave surfaces of Bourdon tubes using a thin layer of epoxy. The strain profiles along the concave surface of the Bourdon tube vary with applied pressure, and the strain variations are transferred to the attached SMF through the epoxy layer, resulting in spectral shifts in the local Rayleigh backscattering signals. By monitoring the local spectral shifts of the OFDR system, the pressure applied to the Bourdon tube can be determined. By cascading multiple Bourdon tubes and correspondingly attaching SMF sections (i.e., a series of SMF-modified Bourdon tubes), distributed pressure measurements can be realized. Three Bourdon tubes are employed to demonstrate the proposed spatially distributed sensing scheme. The experimental results showed that linear relationships between spectral shift and pressure were obtained in all three SMF-Bourdon tubes (i.e., at three spatial locations). It is expected that the proposed sensing device, the SMF-Bourdon tube, can be used in applications where distributed/multipoint pressure measurements are needed
    • …
    corecore