View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

MISSOURI
s Missouri University of Science and Technology

Scholars' Mine

Electrical and Computer Engineering Faculty

Research & Creative Works Electrical and Computer Engineering

01 Jul 2019

Distributed Fiber-Optic Pressure Sensor based on Bourdon Tubes
Metered by Optical Frequency-Domain Reflectometry

Chen Zhu
Yiyang Zhuang
Yizhen Chen

Rex E. Gerald Il

et. al. For a complete list of authors, see https.//scholarsmine.mst.edu/ele_comeng_facwork/3838

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

C. Zhu et al., "Distributed Fiber-Optic Pressure Sensor based on Bourdon Tubes Metered by Optical
Frequency-Domain Reflectometry," Optical Engineering, vol. 58, no. 7, SPIE, Jul 2019.
The definitive version is available at https://doi.org/10.1117/1.0E.58.7.072010

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.


https://core.ac.uk/display/229311557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork/3838
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1117/1.OE.58.7.072010
mailto:scholarsmine@mst.edu

Optical Engineering 58(7), 072010 (July 2019)

Distributed fiber-optic pressure sensor based on Bourdon
tubes metered by optical frequency-domain reflectometry

Chen Zhu, Yiyang Zhuang, Yizheng Chen, Rex E. Gerald IlI, and Jie Huangf
Missouri University of Science and Technology, Department of Electrical and Computer Engineering, Rolla, Missouri, United States

Abstract. We report a distributed fiber-optic pressure sensor based on Bourdon tubes using Rayleigh back-
scattering metered by optical frequency-domain reflectometry (OFDR). In the proposed sensor, a piece of single-
mode fiber (SMF) is attached to the concave surfaces of Bourdon tubes using a thin layer of epoxy. The strain
profiles along the concave surface of the Bourdon tube vary with applied pressure, and the strain variations are
transferred to the attached SMF through the epoxy layer, resulting in spectral shifts in the local Rayleigh back-
scattering signals. By monitoring the local spectral shifts of the OFDR system, the pressure applied to the
Bourdon tube can be determined. By cascading multiple Bourdon tubes and correspondingly attaching SMF
sections (i.e., a series of SMF-modified Bourdon tubes), distributed pressure measurements can be realized.
Three Bourdon tubes are employed to demonstrate the proposed spatially distributed sensing scheme. The
experimental results showed that linear relationships between spectral shift and pressure were obtained in all
three SMF-Bourdon tubes (i.e., at three spatial locations). It is expected that the proposed sensing device, the
SMF-Bourdon tube, can be used in applications where distributed/multipoint pressure measurements are
needed. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: [T TT 77 TOE5.4072070]

Keywords: distributed pressure sensor; Bourdon tube; optical frequency-domain reflectometry; single-mode fiber; Rayleigh scattering.
Paper 181579SS received Nov. 1, 2018; accepted for publication Mar. 15, 2019; published online Apr. 3, 2019.

1 Introduction interferometry-based pressure-sensing technique, which

High-performance, static pressure measurements are ex-
tremely important in many applications, such as downhole
monitoring, fluid engineering, and production of pharma-
ceuticals.®¥ In recent years, fiber-optic sensors have been
widely demonstrated for static/dynamic pressure monitoring
in harsh environments. Compared with traditional mechani-
cal and electrical methods, fiber-optic pressure sensors hold
several unique advantages, such as being lightweight, chemi-
cal and thermal resistant, immune to electromagnetic inter-
ference, multiplexing, and capable of remote operation.B8
The majority of reported fiber-optic pressure sensors are
based on the diaphragm extrinsic Fabry—Perot interferometer
(DEFPI) structure The pressure-sensing element in a
DEFPI-based pressure sensor is a thin diaphragm, which
is typically bonded to the tip of a micromachined optical
fiber.™¥ A Fabry—Perot cavity is formed between the optical
fiber endface and the inner surface of the diaphragm. The
thin diaphragm deflects in proportion to the external pres-
sure, which leads to a change in the cavity length of the EFPL.
By analyzing the shift of the interference spectrum induced
by a cavity length change, the change in external pressure
can be precisely and accurately determined. The sensitivity
and dynamic range of the DEFPI-based pressure sensors can
be flexibly designed using diaphragms with different proper-
ties (e.g., thickness, diameter, and Young’s modulus) to meet
different application requirements. However, the microfabri-
cation process of a DEFPI-based pressure sensor is compli-
cated and sometimes costly. Meanwhile, the stability and
durability of the diaphragm (e.g., with a thickness on the
micrometer/nanometer scale) fixed to a fiber tip are always
a concern in real-world applications.EI Additionally, the
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takes advantage of the wavelength dependence over a broad
range, is difficult to multiplex in a series arrangement.Im

Another widely used pressure transducer, the Bourdon
tube, operates using a different principle.D For example, a
C-shaped Bourdon tube expands out slightly when subjected
to an external pressure. Typically, a needle is permanently
welded to the end of the Bourdon tube to quantify the move-
ment of the free end caused by a pressure change. Recently,
researchers have developed a new device with better pres-
sure measurement performances (i.e., higher sensitivity and
higher resolution) based on Bourdon tube and optical fiber
Bragg grating (FBG).B8 For instance, FBGs were bonded
to the outside and inside surfaces of a C-shaped Bourdon
tube to measure the strain change during the pressure-
induced mechanical movement. The FBG-based pressure
sensor was potentially capable of achieving quasidistributed
measurements by cascading a series of FBGs along an
optical fiber.3

As an important distributed optical fiber sensor (DOFS)
technique, Rayleigh backscattering-based optical frequency-
domain reflectometry (OFDR) has been widely explored for
sensing various physical and chemical parameters, such as
temperature,H vibration,'ll1 strain,u’B and refractive index 2H
Compared to the multiplexed FBGs-based quasidistributed
sensor, the OFDR-based DOFS achieves fully distributed
sensing with high spatial resolution (millimeter scale or
better) using an intact single-mode fiber (SMF). Combing
the Bourdon tube as a rough mechanical pressure transducer
with the Rayleigh backscattering-based OFDR system as an
extremely sensitive signal interrogation unit for very small
pressure changes, distributed and highly precise pressure
sensing based on an SMF could be developed.

0091-3286/2019/$25.00 © 2019 SPIE
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In this paper, a Rayleigh backscattering-based SMF sen-
sor combined with multiple Bourdon tubes (SMF-Bourdon
tubes) is proposed and demonstrated for distributed pressure
measurements. The sensor was interrogated with an OFDR
system for achieving distributed and real-time monitoring
of pressures with high dynamic range and precision. In the
proposed sensor, a continuous length of SMF was attached
to the inside surfaces of three cascaded C-shaped Bourdon
tubes using thin layers of epoxy. As a result, the strain var-
iations along the inside surfaces of the Bourdon tubes caused
by pressure changes were coupled to the SMF. The strain
variations along the SMF resulted in local Rayleigh back-
scattering spectral shifts in the OFDR system. Consequently,
the pressure applied to the Bourdon tubes was correlated to
the local spectral shifts along the SMF. In the demonstration
experiment, three Bourdon tubes were placed at the posi-
tions 2.00, 3.65, and 5.25 m from the incident end of the
SMEF, functioning as three multiplexed pressure transducers.
Pressures in the range of 0 to 0.5 MPa were simultaneously
applied to the three Bourdon tubes to verify the capability for
distributed pressure sensing by the proposed SMF-Bourdon
tubes device.

2 Sensor Designh and Measurement Principle

2.1 Sensor Design

A schematic drawing of the proposed distributed pressure
sensor based on SMF-Bourdon tubes is illustrated in
Fig. [[(a]. Figure [[(b)] shows a photograph of a prototype sen-
sor mounted on a homemade hydrostatic pressure chamber.
Figure shows an expanded view of one SMF-Bourdon
tube. The prototype sensor principally consists of three

Bourdon tube

SMF

LRI

(b

Fig. 1 (a) A schematic diagram of the proposed distributed pressure
sensor based on SMF-Bourdon tubes. (b) A photograph of a proto-
type sensor mounted on a homemade hydrostatic chamber. (c) An
expanded view of the sensor showing that a section of SMF is attached
on the inside surface of the C-shaped Bourdon tube using a thin layer
of epoxy.
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C-shaped Bourdon tubes and one SMF. Each C-shaped
Bourdon tube has a flat oval cross section with the free end
sealed. When a pressure is applied to the tube, it tends to
deflect and straighten out slightly, resulting in a change in
the strain profile along the inside surface. The maximum
strain (¢) along the inside circumferential surface occurs
at the center point and can be calculated byIEI

1—ﬂ2122< b2> 3 20

¢ E d* )+ KK

P, 6]

where u and E are the Poisson’s ratio and Young’s modulus
of the material, respectively; R is the radius of curvature of
the Bourdon tube; a and b are the semimajor and semiminor
axes of the flat oval cross section, respectively; % is the wall
thickness of the tube; @ is a position function for the relation-
ship between a/b and h/b; P is the applied pressure;
K = Rh/a?. For a defined Bourdon tube (i.e., all the physi-
cal parameters are determined), the maximum strain is
linearly proportional to the applied pressure. As shown in
Fig. [[(c), in the design of the SMF-Bourdon tube, the SMF
was bonded on the inside surfaces of the Bourdon tube. As
the Bourdon tube deflects, a tensile strain is generated along
the inside surface, and it is metered by the attached SMF.
The variations in the tensile strain in the SMF result in local
spectral shifts in the Rayleigh backscattering signals. By
monitoring the spectral shifts along the SMF, the applied
pressure can be determined. Thus, the Bourdon tube with
a section of SMF attached can act as a pressure sensor after
proper calibration. By cascading multiple Bourdon tubes
(e.g., three) and correspondingly attaching a single SMF on
the inside surfaces, distributed pressure sensing can be real-
ized using the proposed SMF-Bourdon tubes.

2.2 Measurement Principle

As discussed above, the pressure applied to each Bourdon
tube induces a change in the local strain profile along the
attached SMF, which is then correlated to the spectral shift
of the Rayleigh backscattering signals along the SME. A
Rayleigh backscattering OFDR system is used to interrogate
the SMF-based distributed pressure sensor. The Rayleigh
backscattering along an optical fiber originates from the ran-
dom fluctuations in the refractive index profile caused during
the fiber heating/drawing process. The tensile strain that
results from a force applied to an SMF elongates the optical
fiber, causing a shift in the local Rayleigh backscattering
signal. The shift in the Rayleigh backscattering signal can
be determined by comparing the spectra to the original
spectrum using the cross-correlation algorithm. The signal
processing procedures are described in detail below. First,
the reference signal and measurement signals under different
pressure settings are collected separately. Fast Fourier trans-
forms are performed to transfer the collected signals from
the optical frequency domain to the spatial domain. Second,
a sliding window is applied to the spatial-domain signals
to spatially select the local Rayleigh backscattering. The
spatially selected local Rayleigh backscattering signal is
zero-padded to increase the frequency resolution for later
processing. Third, inverse fast Fourier transforms are per-
formed to convert these spatially selected local Rayleigh
backscattering signals from the spatial domain back to the
optical frequency domain. Last, cross-correlation analysis
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is performed between the local reference and measured
Rayleigh backscattering spectra to extract the spectral shifts.
The spectral shifts essentially reflect the pressure variations
applied to the Bourdon tubes. Thus, distributed pressure
sensing can be realized based on the proposed SMF-Bourdon
tubes device.

3 Experimental Results and Discussions

The experimental setup for the distributed pressure measure-
ments is shown in Fig. [J: (a) presents a diagram of the home-
built OFDR system and (b) schematically shows a multipoint
hydrostatic pressure setup. A tunable laser source (TLS,
Agilent 81680A) is employed as the light source with tuning
speed, tuning range, and starting wavelength of 5 THz/s
(40 nm/s), 2.5 THz (20 nm), and 1530 nm, respectively.
The light output from the TLS is split into two paths by a
2:98 coupler. The 2% light beam is coupled to an auxiliary
interferometer (a Mach—Zehnder interferometer). The aux-
iliary interferometer provides an external clock to trigger
the data acquisition card that samples the interference sig-
nals with an equal optical frequency spacing, thus reducing
the nonlinearity of the frequency tuning of the TLS. The
98% light beam is coupled to the main interferometer.
The fiber under test (FUT) in the main interferometer is a
6-m-long SMF.

The Bourdon tubes (YE-100-1MPa) used in constructing
the prototype sensor with a dynamic range of 1 MPa were
purchased from SYCIF (Shanghai, China). Three Bourdon
tubes were mounted on a homemade hydrostatic pressure
chamber in parallel, and three sections of the FUT, at posi-
tions 2.00, 3.65, and 5.25 m, were attached to the inside
surfaces of the three Bourdon tubes. The pressure in the
hydrostatic pressure chamber could be manually increased
by a hydrostatic test pump which was calibrated using a com-
mercial pressure meter (0.1% measurement accuracy). The
inner diameters of the C-shaped Bourdon tubes used in the

—— Optical path
mm | lectrical path

Polarization
controller

TLS DAQ m= Computer

Circulator

13

Fiber under test

Coupler

Pressure sensor

Bourdon
tube

Hydrostatlc test pump

Hydrostatlc pressure chamber

Water pipe

(b)
Fig. 2 Experimental setup for demonstrating the proposed distrib-

uted pressure sensor: (a) a diagram of the OFDR system and
(b) a schematic drawing of the hydrostatic pressure setup.
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sensor construction are ~64 mm. From the spatial-domain
signal of the FUT, no loss was introduced after attaching the
SMF sections to the Bourdon tubes, theoretically indicating
that thousands of Bourdon tubes could be cascaded in series
along the SMF to achieve large-scale distributed pressure
sensing.

A series of hydrostatic pressures ranging from 0 to
0.5 MPa was applied to the homemade hydrostatic pressure
chamber to demonstrate the distributed pressure-sensing
capability of the proposed sensor. Based on the parallel
design, all three Bourdon tubes experienced the same pres-
sure. Figure shows the measured spectral shift as a
function of the spatial position from the incident end of the
optical fiber at a pressure setting of 0.5071 MPa. Noticeable
spectral shifts were detected at the three locations, where the
SMF was attached to the Bourdon tubes. Very small spectral
shifts were measured at other locations along the SMEF,
indicating that there was little cross talk from the other sec-
tions of the FUT that were not attached to the Bourdon tubes.
The spectral shifts as a function of spatial position from the
sensing end of the optical fiber at various pressure settings
at the three different positions (i.e., 2.00, 3.65, and 5.25 m)
are shown in Figs. B(b}B(d], respectively. For the signal
processing, the size of the sliding window and the number
of points after zero-padding were set to 250 and 20,000,
respectively. Thus, the spatial sampling interval was calcu-
lated to be 1 cm. As can be observed, the spectral shifts at
all three positions increased monotonically with the increase
in the applied pressure. An interesting observation is that the
spectral shifts at the three pressure measurement locations
are not identical under the same pressure settings; this is
because of the variations in the stiffness of the Bourdon tubes
during the manufacturing process. Meanwhile, the strain
transfers between the attached SMF sections and the inside
surfaces of the Bourdon tubes were not identical due to the
different thicknesses of the epoxy layers.EI Noticeable neg-
ative spectral shifts were obtained at the positions of 3.71 and
3.72 m. We checked the attached SMF at these two positions
and found out that this section of SMF was compressed dur-
ing the pressure increments due to the mounting fashion
of the SMF, which matched well with the negative spectral
shift measurement results. It should be noted that tempera-
ture cross talk can be compensated by employing the SMF
that is not attached to the Bourdon tubes. Specifically, the
sections of the SMF that are attached to the Bourdon tubes
are sensitive to both pressure and temperature variations,
while the remaining sections of the SMF are only sensitive
to temperature variations, due to the thermal-optic effect and
the thermal expansion effect. Therefore, the SMF that is not
bonded to the Bourdon tubes can be used to monitor the
changes in the surrounding temperature.

The spectral shift at spatial positions 2.00, 3.65, and
5.25 m as a function of applied pressure is shown in Fig. [
in blue, yellow, and green dots, respectively. Linear curve
fittings were applied to the experimental datasets. Good
linear relationships were obtained in all three datasets with
R? values of 0.9975, 0.9969, and 0.9981, respectively. The
pressure measurement sensitivities of the attached SMF at
the three positions, 2.00, 3.65, and 5.25 m, were determined
to be 16.38, 28.32, and 35.42 GHz/MPa, respectively. The
pressure measurement sensitivities of the proposed SMF-
Bourdon tubes are tens of times higher than the intrinsic
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Fig. 3 Experimental demonstration of the spatially distributed pressure sensor. (a) Measured spectral
shift as a function of spatial distance from the sensing end of the optical fiber at a pressure setting of
0.5071 MPa. (b)-(d) Measured spectral shift as a function of distance from the incident end of the optical
fiber at various pressure settings at the three positions 2.00, 3.65, and 5.25 m, where SMF sections were
attached to the Bourdon tubes.

pressure sensitivity of a bare FBG.B There are differences
between the three measured sensitivities, which are due to
the variations in the stiffness of the Bourdon tubes (i.e.,
they were not manufactured identically) and different strain
transfers between the SMF sections and the Bourdon tubes
due to the epoxy adhesive layer, as discussed above. The
different measurement sensitivities reveal that each of the
SMEF-Bourdon tubes has to be properly calibrated before
applications. The sensitivity of the proposed SMF-Bourdon
tubes pressure sensor can be improved using a thinner layer
0 01 02 03 04 05 of epoxy, thus increasing the strain transfer coefficient be-

Pressure (MPa) tween the SMF and the inside surface of the Bourdon tubes.

Fig. 4 Spectral shift at positions 2.00, 3.65, and 5.25 m as a function On the other hand, different Bourdon tubes with different

of pressure. Curve fitting was applied to the three datasets, and dyna}mic. ranges can be employed for different sensing
satisfactory linear relationships were obtained. applications.

= Position @ 2.00 m
Position @ 3.65 m

[ | # Position @ 5.25 m
— Linear fit
Linear fit

| [—Linear fit

—
W

Spectral shift (GHz)
=

W

External pressures
P, P,

Capillary tube
/ Fluid
/‘/ Optical fiber
Structure pressures

1 \
d “d \Adhesive

Capillary seal

Fig.5 Schematic diagram showing the general features of an optical fiber attached to a flexible mechani-
cal structure (e.g., a capillary tube) that can function as a distributed pressure sensor device tailored for
metering a wide range of external pressures.
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Based on the proposed SMF-Bourdon tubes, thousands of
Bourdon tubes can be cascaded along an SMF to achieve
extensive distributed pressure sensing. Here, inspired by the
SMF-Bourdon tubes, we propose a general strategy for fully
distributed pressure measurements. Figure [ illustrates the
external attachment of an SMF to a capillary tube that has
material (e.g., glass and plastic) and design properties
(e.g., stiffness) that allow mechanical flexing. Taking advan-
tage of the distributed strain measurement capability of the
OFDR system, the strain profile of the SMF attached to the
capillary tube can be monitored in real time. The capillary
tube, configured as a high-pressure chamber, can be made
to have variable stiffness by pressurizing a fluid (gas or
liquid) contained in the chamber. Variable fluid pressure (and
fluid type) will provide adjustable stiffness in addition to the
mechanical stiffness provided by the capillary tube. A con-
densed phase fluid (liquid) with low compressibility will
afford a more rigid structure, suitable for a high range of
strain measurements that meter high external pressures. A
nonideal gas with high compressibility will afford a less rigid
structure suitable for a low range of strain measurements that
meter low external pressures. Calibrations and detailed stud-
ies are ongoing in our lab.

4 Conclusion

A Rayleigh backscattering-based SMF distributed pressure
sensor is proposed and demonstrated in this paper. Multiple
Bourdon tubes were employed as mechanical pressure trans-
ducer surrogates, and an SMF was attached to the inside
surfaces of the Bourdon tubes to form high-fidelity SMF-
Bourdon tube pressure-sensing structures. The sensor was
interrogated with an OFDR system to achieve spatially dis-
tributed and real-time monitoring of hydrostatic pressure
changes applied to the Bourdon tubes. In a demonstration
experiment, three Bourdon tubes were placed at three differ-
ent positions along the SMF: 2.00, 3.65, and 5.25 m. A series
of hydrostatic pressures ranging from 0 to 0.5 MPa were
simultaneously applied to the three Bourdon tubes using a
hydraulic test pump and a homemade hydrostatic pressure
chamber. The responses of the three SMF sections were
tested to verify the capability of distributed sensing of the
proposed sensor device. The results demonstrated that the
sensor could be used to simultaneously measure multipoint
pressure variations by monitoring the local Rayleigh back-
scattering spectral shifts. The proposed method and SMF-
Bourdon tubes device, with proper calibration, have wide
applications in various fields requiring distributed pressure
measurements. For instance, the system can be used to detect
the leakage of gas or liquid in pipelines, or used for distrib-
uted liquid-level sensing based on hydrostatic pressure mea-
surements. We anticipate that another application for the
SMF-Bourdon tube sensor is in diagnostic monitoring of
the pressure modulations of the fluid flow in systems under
elevated pressures, such as the water cooling systems and
the oil in the crankcase of automobile engines. Pressure mod-
ulations that do not match known patterns for proper engine
operations can indicate the onset of premature failure path-
ways of engine components. The high sensitivity of the
SMF-Bourdon tube system can be used to record pressure
modulations during scheduled automobile maintenance ser-
vices and compare them to established standards for diagnos-
tic purposes. Similarly, the compressed air pressure system in
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a building could be monitored by an SMF-Bourdon tube
system to indicate the onset of problems with the compres-
sion pump as well as signature pressure changes that corre-
late with excessive releases of gas from ruptured pipes and
leaking valves.

In addition to the C-shaped Bourdon tubes used in the con-
struction of the prototype sensor, spiral or helical Bourdon
tubes can also be employed for fabricating the SMF-Bourdon
tubes structure. In fact, the SMF-Bourdon tubes motif pro-
vides a sensing scheme to combine a structure that has a
mechanical response to pressure (e.g., expansion or deflec-
tion) with an optical fiber for distributed pressure sensing.
Therefore, by judiciously designing the pressure sensitive
structure, it is envisioned that distributed internal and external
pressure sensing can be realized.
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