
Université de Montréal

On Space-Time Trade-Off for Montgomery Multipliers over Finite Fields

par
Yiyang Chen

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en informatique

Avril 2015

c© Yiyang Chen, 2015.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Université de Montréal

https://core.ac.uk/display/151553679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RÉSUMÉ

La multiplication dans les corps de Galois à 2m éléments (i.e. GF(2m)) est une opérations très im-

portante pour les applications de la théorie des codes correcteurs et de la cryptographie. Dans ce

mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2m) lorsque

ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de

Montgomery qui calcule A(x) ·B(x) · x−u efficacement, étant donné A(x),B(x) ∈ GF(2m) pour u

choisi judicieusement. Nous étudions ensuite l’algorithme diviser pour régner PCHS qui permet de

partitionner les multiplicandes d’un produit dans GF(2m) lorsque m est impair. Nous l’appliquons

pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x) ·B(x) · x−u

pour GF(2m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multipli-

cateur dans GF(2m) généré par des trinômes irréductibles. Une nouvelle astuce de réutilisation des

résultats intermédiaires nous permet d’éliminer plusieurs portes XOR redondantes. Les complexi-

tés de temps (i.e. le délai) et d’espace (i.e. le nombre de portes logiques) du nouveau multiplicateur

sont ensuite analysées :

1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multi-

plicateurs de Montgomery et de Mastrovito lorsque GF(2m) est généré par des trinômes

irréductibles et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur

est presque identique à celui du multiplicateur de Karatsuba proposé par Elia.

2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d’au

plus deux évaluations de portes XOR.

3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur

les deux corps de Galois recommandés par le National Institute of Standards and Tech-

nology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes

logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d’un délai d’au

plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d’une porte

XOR moindre que celui du multiplicateur d’Elia au coût d’une augmentation de moins de

1% du nombre total de portes logiques.

Mots-clés : Corps de Galois, calcul parallèle, multiplication Montgomery, multiplication

Karatsuba, trinôme irréductible.

ABSTRACT

The multiplication in a Galois field with 2m elements (i.e. GF(2m)) is an important arithmetic

operation in coding theory and cryptography. In this thesis, we focus on the bit-parallel multipliers

over the Galois fields generated by trinomials. We start by introducing the GF(2m) Montgomery

multiplication, which calculates A(x) ·B(x) · x−u ∈ GF(2m) with two polynomials A(x), B(x) ∈
GF(2m) and a properly chosen u. Then, we investigate the rule for multiplicand partition used by a

divide-and-conquer algorithm PCHS originally proposed for the multiplication over GF(2m) with

odd m. By adopting similar rules for splitting A(x) and B(x) in A(x) ·B(x) · x−u, we develop new

Montgomery multiplication formulae for GF(2m) with m either odd or even. Based on this new

approach, we develop the corresponding bit-parallel Montgomery multipliers for the Galois fields

generated by trinomials. A new bit-reusing trick is applied to eliminate redundant XOR gates from

the new multiplier. The time complexity (i.e. the delay) and the space complexity (i.e. the logic

gate number) of the new multiplier are explicitly analysed:

1. This new multiplier is about 25% more efficient in the number of logic gates than the pre-

vious trinomial-based Montgomery multipliers or trinomial-based Mastrovito multipliers

on GF(2m) with m big enough. It has a number of logic gates very close to that of the

Karatsuba multiplier proposed by Elia.

2. While having a significantly smaller number of logic gates, this new multiplier is at most

two TX larger in the total delay than the fastest bit-parallel multiplier on GF(2m), where TX

is the XOR gate delay.

3. We determine the space and time complexities of our multiplier on the two fields recom-

mended by the National Institute of Standards and Technology (NIST). Having at most one

more TX in the total delay, our multiplier has a more-than-15% reduced logic gate number

compared with the other Montgomery or Mastrovito multipliers. Moreover, our multiplier

is one TX smaller in delay than the Elia’s multiplier at the cost of a less-than-1% increase in

the logic gate number.

Keywords: Galois field, parallel computation, Montgomery multiplication, Karatsuba

multiplication, irreducible trinomial.

CONTENTS

RÉSUMÉ . ii

ABSTRACT . iii

CONTENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

NOTATION . ix

ACKNOWLEDGMENTS . x

CHAPTER 1: INTRODUCTION . 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Contribution of the Thesis . 3

1.4 Outline and Organization . 5

CHAPTER 2: PRELIMINARIES . 6

2.1 Galois Field GF(2m) and Its Arithmetic 6

2.2 Some Concepts in Circuit Layout and Computation 9

2.2.1 The AND Gate and the XOR Gate 10

2.2.2 The Space Complexity and the Time Complexity 10

2.3 The Ordinary Multiplication Scheme 12

2.4 The Montgomery Multiplication Scheme 13

2.5 The Divide-and-Conquer Multiplication Schemes 16

2.5.1 The Karatsuba Algorithm in F2[x] 16

2.5.2 The PCHS Algorithm . 17

CHAPTER 3: NEW FIELD MULTIPLICATION USING MONTGOMERY

SQUARING OPERATION 20

3.1 Our Proposal . 20

3.2 The Complexities for Computing C(x) and D(x) 23

3.3 The Representation of S1(x)+S2(x) by C(x) and D(x) 25

3.4 The Computation of S3(x) . 28

3.4.1 A New Method for Computing S3(x) Using a XOR-Gate-Saving

Strategy . 29

3.4.2 Summary of the Space Complexity Analysis of S3(x) 36

3.4.3 Summary of the Time Complexity Analysis of S3(x) 37

3.5 The Full Computation Sequence and the Overall Complexity Analysis . 37

3.6 The Case When m Is Even . 42

CHAPTER 4: COMPARISON AND DISCUSSION 49

CHAPTER 5: CONCLUSIONS . 56

5.1 Summaries and Conclusions . 56

5.2 Future Research . 56

BIBLIOGRAPHY . 57

v

LIST OF TABLES

2.I The procedure of the ordinary multiplication method 13

2.II Elia’s algorithm on GF(2m) generated by xm+xk +1, m even, 0 <

k ≤ m
2 . 18

3.I The space and time complexities for computing C(x) 24

3.II The initial XOR numbers between uiv j terms for each of the coef-

ficients of S3(x) (k ≥ 3) . 30

3.III The S3(x) coefficients containing redundant XOR operations (k≥ 3) 35

3.IV The computation sequence in the case when m, k is odd, k ≤ m−3
2 38

3.V Complexities of the new Montgomery multiplier in the other cases 43

3.VI The computation sequence in the case when m is even and m > 2k 48

4.I Comparison of several bit-parallel multipliers based on irreducible

trinomials . 53

4.II Complexities of several bit-parallel multipliers on the two Galois

fields recommended by the National Institute of Standards and

Technology . 54

LIST OF FIGURES

2.1 The AND gate symbol . 10

2.2 The XOR gate symbol . 10

2.3 The simplified XOR gate symbol 10

2.4 Illustration of circuit delay . 11

3.1 The binary XOR tree (a) related to t0 31

3.2 The binary XOR tree (b) related to tk 31

3.3 Illustration of our bit-reusing trick between the binary XOR trees 32

4.1 A comparison over p1(x) . 54

4.2 A comparison over p2(x) . 54

LIST OF ABBREVIATIONS

VLSI very large scale integration

XOR exclusive OR

PB polynomial basis

SPB shifted polynomial basis

NB normal basis

AOP all-one polynomial

ESP equally-spaced polynomial

ECC elliptic curve cryptography

DB dual basis

WDB weak dual basis

DC divide-and-conquer

PCHS a divide-and-conquer algorithm by S. Park, K, Chang, D. Hong, and C. Seo[21]

NIST National Institute of Standards and Technology

ECDSA elliptic curve digital signature algorithm

NOTATION

(n)2 the binary form of n

bxc the floor function

dxe the ceiling function

Z the integer ring

Z+ {n ∈ Z | n > 0}
F a field

GF(2) or F2 0-1 field

GF(2)[x] or F2[x] the polynomial ring over the 0-1 field

GF(2m) or Fm
2 A Galois field having 2m elements

S
⊗

the number of AND gates in a sub-circuit

S
⊕

the number of XOR gates in a sub-circuit

TA the AND gate delay

TX the XOR gate delay

T
⊗

the delay caused by the AND operations in a sub-circuit

T
⊕

the delay caused by the XOR operations in a sub-circuit

Delay the total delay of a sub-circuit

O the big O notation

W (·) the Hamming weight

the cardinality of a set(n
k

)
the binomial coefficient⋂
intersection⋃
union

/0 the empty set

ACKNOWLEDGMENTS

This thesis is based upon my research conducted over the past three years during my

study for my Master’s Degree in Department of Informatics and Operational Research

at Université de Montréal.

First of all, I would like to express my thanks to Professor Louis Savail for his support

to my self-motivated research. His lectures on cryptography were very helpful to me in

undertaking this research. I am grateful for his time and suggestions in reviewing my

thesis. These suggestions have contributed a lot for improving my thesis.

I would like to thank Dr. Yin Li, my former colleague at Shanghai Jiaotong Uni-

versity (SJTU), for his suggestions and time in reviewing this work across the past two

years.

I would like to thank Professor Gilles Brassard for his classes in Quantum Informat-

ics. His teachings are precise and humorous, his assignments are entertaining. I am still

interested by the bit communication problems that have puzzled me in the final exam. It

is my hope that I can use my spare time in the future to find the solutions by myself.

I am also very grateful to several faculty and staff members for their daily help and

support to my study in the department. I express my gratitude to Professor Jean-Yves

Potvin and Professor Sébastien Roy for their time and effort for extending my study per-

mit in Quebec and Canada. I want to express my heartfelt thanks to Professor Jianyun

Nie for his teachings and guidance. Finally, I want to extend my sincere thanks to Ms.

Mariette Paradis and Ms. Céline Bégin for their excellent service in student administra-

tion.

CHAPTER 1

INTRODUCTION

1.1 Background

Efficient hardware implementation of multiplications over GF(2m) are very impor-

tant in many areas such as coding theory, computational algebra and public-key cryp-

tosystems [1][2]. In general, there are three different architectures for implementing a

GF(2m) multiplier: bit-serial, digit-serial and bit-parallel. Bit-serial multipliers use a

single wire to process one bit at a time, while the bit-parallel multipliers use multiple

wires to process multiple bits simultaneously. The bit-serial multipliers are the slow-

est in speed and the smallest in circuit size. In contrast, the bit-parallel multipliers are

the fastest in speed but the greatest in circuit size. The digit-serial multipliers process

a fixed number of bits (i.e. a digit) per cycle. They are a compromise between the bit

parallel multipliers and the bit serial multipliers. Nowadays, with the development of

very-large-scale integration (VLSI), more and more logic gates can be located on a sin-

gle chip. This progress makes bit-parallel multipliers on chip possible and reasonable.

A number of bit-parallel schemes for the multiplication over GF(2m) have been pro-

posed during recent years. Characterized by a high computation speed or a small circuit

size, these works cover extensive cases with respect to different base representations and

different generating polynomials.

The choice of base representation, i.e. the way to represent multiplicands, has a di-

rect influence on the performance of GF(2m) multipliers. The polynomial basis (PB)

[9], with a form as {xu | u = 0,1,2, · · · ,m− 1}, is the simplest basis for constructing

multipliers over GF(2m). Besides PB, some other bases have also been investigated for

facilitating multiplications over special Galois fields. Fan proposed the shifted polyno-

mial basis (SPB) and discussed two types of multipliers using SPB [7]. As a variation

of PB, the SPB simplifies the modular operations. There are other unconventional bases

such as the normal basis (NB) [28], the dual basis (DB) [29] and the general polynomial

1

basis (GPB) [10]. Compared with the polynomial basis, these unconventional bases are

only better in some special cases.

The choice of irreducible polynomials for generating GF(2m) is crucial to the effi-

ciency of the corresponding multiplier. Commonly used irreducible polynomials include

all-one polynomial (AOP) [31], equally-spaced polynomial (ESP) [34], pentanomial [32]

and trinomial [22][24]. Irreducible AOPs and ESPs have regular structures that can be

exploited in the multiplication process, but such polynomials are quite rare. For example,

there are no more than 100 irreducible AOPs in F2[x] with degrees smaller than 1000.

Besides, many multiplier designers like to use irreducible trinomials, i.e. polynomials

with only three non-zero terms, because trinomials can minimize the number of XOR

operations during the modular reduction. The irreducible trinomials are more abundant.

For example, there are over 1000 irreducible trinomials in F2[x] with degrees smaller

than 1000. When no irreducible trinomial is available for a given degree, pentanomials

with exactly five non-zero terms are used as a substitute. Empirically, one can always

find an irreducible pentanomial to construct GF(2m) with a sufficiently big m.

A direct implementation of the multiplication over GF(2m) includes two steps: (1) to

multiply two polynomials together in F2[x] and (2) to reduce the product modulo the gen-

erating polynomial of GF(2m). Nowadays, there are three typical schemes for GF(2m)

multiplication: (1) the Montgomery scheme, (2) the Karatsuba scheme and (3) the Mas-

trovito scheme. Originally used for facilitating integer modular multiplication, the Mont-

gomery multiplication [14] was later modified for performing multiplications on GF(2m)

[15][19][20]. Suppose f (x) generates GF(2m), the Montgomery multiplication is gen-

erally expressed by A(x)B(x)R−1(x) mod f (x), where A(x),B(x) ∈ GF(2m), R(x) is a

power of x and R−1(x) is the inverse of R(x) in GF(2m). This multiplication is suitable

for both hardware and software implementations.

The Karatsuba scheme is a divide-and-conquer algorithm that transforms a poly-

nomial multiplication into three sub-polynomial multiplications with extra polynomial

additions. This algorithm is often recursively applied in building sub-quadratic GF(2m)

multipliers [33]. Elia [23] has constructed a bit-parallel multiplier by using only one

recursion of the Karatsuba algorithm, Li [24] and Cho [22] later developed variations of

2

Elia’s algorithm.

The Mastrovito scheme [11] carries out a multiplication in GF(2m) as a matrix-

vector multiplication with elements in GF(2). Suppose C(x) = A(x)B(x) mod f (x), a

matrix M can be constructed from A(x) and f (x). Then, C = MB, where C and B repre-

sent the coefficient vectors of C(x) and B(x), respectively. This scheme is especially

suitable for constructing bit-parallel multipliers, and has attracted a lot of attentions

[7][8][12][13][25].

1.2 Motivation

Modern cryptosystems, such as Elliptic curve cryptography, heavily rely on the

GF(2m) arithmetic. In fact, the size of GF(2m) is usually larger than 2160. This may

cause efficiency problems with the arithmetic operations over GF(2m), especially in em-

bedded systems with limited computing power and small area capacity. Thus, it is crucial

to design efficient algorithms for implementing arithmetic operations over GF(2m).

When designing a multiplier, we may have to deal with the relationship between

the size, i.e. space complexity, and the delay, i.e. time complexity, of the circuit. On

one hand, an improvement in the speed of the circuit generally requires an increase in the

number of logic gates. On the other hand, if we want to save logic gates, we may face the

risk of increasing the delay of the circuit. Thus, many schemes are more efficient only

for the space or for the time. To construct a multiplier with a better balance between

the size and the speed, we have to deal with the problem of “space-time trade-off” as

reflected by the title of this thesis. We aim to design a new multiplication algorithm that

costs fewer gates than the others while maintaining a relatively high speed.

1.3 Contribution of the Thesis

This thesis presents a new divide-and-conquer GF(2m) multiplication algorithm based

on the PCHS algorithm proposed by S. Park, K, Chang, D. Hong, and C. Seo[21]. The

PCHS algorithm was originally used for constructing multipliers over the Galois fields

generated by two special types of irreducible pentanomials. Nevertheless, the PCHS

3

algorithm is somewhat complicated when performing squaring operations that involve

transformations between the weak dual basis (WDB) and the polynomial basis (PB)

of GF(2m). By adopting the multiplicand partition rule in the PCHS algorithm and the

Montgomery squaring formulae studied by Wu [19], we propose a new bit-parallel Mont-

gomery multiplication algorithm on trinomial-generated Galois fields. We also make an

explicit analysis of the new algorithm on its space and time complexities.

The main contributions of our work are as follows:

1. This new multiplier is about 25% more efficient in space complexity than the

previous trinomial-based Montgomery multipliers or trinomial-based Mastrovito

multipliers on GF(2m) that is big enough. Its space complexity is very close to

that of the Karatsuba multiplier proposed by Elia.

2. This new multiplier is at most two TX larger in time complexity than the fastest

bit-parallel multiplier, where TX is the XOR gate delay.

3. Let F denote the set of 1405 Galois fields generated by

{ f (x) = xm + xk +1 | 100≤ m≤ 1203, 1≤ k ≤ m/2, f (x) is irreducible},

our multiplier has a time complexity of TA+(2+dlog2 me)TX on the 1061 Galois

fields in F , and a time complexity of TA +(3+ dlog2 me)TX on the rest of the

Galois fields in F , where TA is the AND gate delay.

4. We compare our multiplier with the other multipliers in the space and time com-

plexities on the two fields generated by x233 + x74 +1 and x409 + x87 +1, respec-

tively, as recommended by the National Institute of Standards and Technology

(NIST). Our multiplier has a more-than-15% reduced space complexity than the

other Montgomery or Mastrovito multipliers by paying at most one more TX in

time complexity. Moreover, our multiplier is one TX faster than the Elia’s multi-

plier at the cost of a less-than-1% increase in space complexity.

4

1.4 Outline and Organization

This thesis aims to obtain an improved Montgomery multiplication algorithm for the

Galois fields generated by trinomials. The new algorithm uses a divide-and-conquer

technique and relies on the squaring operation in GF(2m). This thesis is divided into

five chapters. After a background introduction in Chapter 1 as mentioned above, Chap-

ter 2 gives a brief introduction of GF(2m) and its arithmetic, followed by a discussion

about some typical GF(2m) multiplication schemes including the ordinary algorithm,

the Montgomery algorithm, the Karatsuba algorithm, and the PCHS algorithm. Chap-

ter 3 presents the new algorithm step-by-step, providing a detailed analysis of the space

and time complexities of the new multiplier on one type of Galois field, followed by a

summary of the space and time complexities on the other types of Galois fields. Chap-

ter 4 compares the time and space complexities of our algorithm with those of the other

typical algorithms. Finally, Chapter 5 summarizes our research and proposes a plan for

possible theoretical improvement and hardware implementation in the future.

5

CHAPTER 2

PRELIMINARIES

2.1 Galois Field GF(2m) and Its Arithmetic

We first introduce the concepts of a group, a ring and a field, especially the Galois

field GF(2m) where the Montgomery multiplication algorithms are used. We first present

the definition of a group:

Definition 2.1.1 ([3]). A nonempty set of elements G is said to form a group if in G there

is defined a binary operation, called the product and denoted by ·, such that

1. a, b ∈ G implies that a ·b ∈ G (closed).

2. a, b, c ∈ G implies that (a ·b) · c = a · (b · c) (associative law).

3. There exists an element e in G such that e ·a = a · e = a for all a ∈ G

(the existence of an identity element in G).

4. For every a ∈ G there exists an element a−1 ∈ G such that a · a−1 = a−1 · a = e

(the existence of inverses in G).

If the operation of a group G is such that a ·b = b ·a for every a, b in G, then we call

G a commutative group.

Next, we introduce the definition of a (associative) ring. A ring is a set that has two

operational rules called addition and multiplication. In a ring, all the elements form a

commutative group under addition, while the nonzero elements do not necessarily form

a group under multiplication:

Definition 2.1.2 ([3]). A nonempty set R is said to be an associative ring if in R there

are defined two operations, denoted by + and · respectively, such that for all a, b, c in R:

1. a+b is in R.

2. a+b = b+a.

3. (a+b)+ c = a+(b+ c).

6

4. There is an element 0 in R such that a+0 = a (for every a in R).

5. There exists an element (−a) in R such that a+(−a) = 0.

6. a ·b is in R.

7. a · (b · c) = (a ·b) · c.

8. a · (b+ c) = (a ·b)+(a · c) and (b+ c) ·a = (b ·a)+(c ·a)
(the two distributive laws).

If the multiplication of a ring R is such that a ·b = b ·a for every a, b in R, then we

call R a commutative ring. Besides, a ring is said to be a division ring if its nonzero

elements form a group under multiplication. Finally, we introduce the concept of a field:

Definition 2.1.3 ([3]). A field is a commutative division ring.

A field is said to be finite if it contains finitely many elements. GF(2) is the smallest

finite field with the following definition:

Definition 2.1.4 ([6]). GF(2), also known as F2, is a field which contains only two

elements: 0 and 1. In GF(2), the modulo-2 addition or XOR is defined as: 0+ 1 = 1,

1+ 1 = 0, 0+ 0 = 0, 1+ 0 = 1, and the multiplication or AND is defined as: 0 · 1 = 0,

1 · 1 = 1, 0 · 0 = 0, 1 · 0 = 0. Therefore, the additive inversion operation is −0 = 0 and

−1 = 1, and the multiplicative inversion operation is 1−1 = 1.

The ring of polynomials [3] over the field F2 in the indeterminate x, denoted by F2[x]

or GF(2)[x], is the set of all symbols a0 + a1x+ · · ·+ anxn, where n can be any non-

negative integer and where the coefficients a1, a2, · · · , an are all in F2. We consider two

(m−1)-degree polynomials, say A(x) and B(x), in F2[x]:

A(x) =
m−1

∑
i=0

aixi = am−1xm−1 +am−2xm−2 + · · ·+a2x2 +a1x+a0,

B(x) =
m−1

∑
i=0

bixi = bm−1xm−1 +bm−2xm−2 + · · ·+b2x2 +b1x+b0.

7

In F2[x], the equality of two polynomials is defined by:

A(x) = B(x)⇐⇒∀i ∈ [0, m−1], ai = bi,

and the rules for adding and multiplying two polynomials are:

A(x)+B(x) = (am−1 +bm−1)xm−1 +(am−2 +bm−2)xm−2 + · · ·

· · ·+(a2 +b2)x2 +(a1 +b1)x+(a0 +b0)

=
m−1

∑
i=0

(ai +bi)xi,

and

A(x)B(x) = (am−1bm−1)x2m−2 +(am−1bm−2 +am−2bm−1)x2m−3 + · · ·

· · ·+(a2b0 +a1b1 +a0b2)x2 +(a1b0 +a0b1)x+a0b0

=
m−1

∑
i=0

(
i

∑
j=0

a jbi− j)xi +
2m−2

∑
i=m

(
m−1

∑
j=i−m+1

a jbi− j)xi,

respectively. Based on the above rules, it can be verified that the axioms defining a ring

hold true for F2[x]. Moreover, the following division algorithm holds over F2[x]:

Lemma 2.1.5 ([3]). Given two unique polynomials p(x) and f (x) 6= 0 in F2[x], then

there exist two polynomials h(x) and r(x) in F2[x] such that p(x) = h(x) · f (x)+ r(x),

where r(x) = 0 or degr(x)< deg f (x).

In the above lemma, we call r(x) the remainder of p(x) modulo f (x), i.e. r(x) =

p(x) mod f (x).

Definition 2.1.6. Suppose a polynomial p(x) ∈ F2[x], then p(x) is called an irreducible

polynomial over F2 if and only if p(x) is not divisible by any polynomial in F2[x] except

for 1 and p(x) itself.

Based on an irreducible polynomial f (x) ∈ F2[x], a field F f (x) is constructed from

RF2,m = {r(x)|r(x) = p(x) mod f (x), ∀p(x) ∈ F2[x]}:

8

Lemma 2.1.7 ([6]). If f (x) is an irreducible polynomial of degree m over F2, then the

set of remainder polynomials RF2,m with mod- f (x) arithmetic forms a finite field F f (x)

with 2m elements.

In the above theorem, the finite field F f (x) is a Galois field with 2m elements, usu-

ally denoted by GF(2m); and f (x) is called the generating polynomial of GF(2m). For

any two elements A(x), B(x) ∈ GF(2m), the addition and multiplication in GF(2m) are

defined as:

Addition: A(x)+B(x),

Multiplication: A(x) ·B(x) mod f (x),

respectively, where “ · ” and “+ ” represent the multiplication and the addition in F2[x],

respectively. It is clear that GF(2m) is a commutative ring. To show that GF(2m) is

also a division ring, it remains to prove that every non-zero element in GF(2m) has its

inverse. For this, we make use of the Euclidean division algorithm, which provides us

with a(x),b(x) ∈ F2[x] for a nonzero element p(x) ∈ GF(2m) such that

a(x)p(x)+b(x) f (x) = GCD(p(x), f (x)) = 1 (Bezout Identity),

where deg(a(x))≤ m−1. Thus, GF(2m) is indeed a field.

In GF(2m), an inversion operation can be treated as a power operation and can be

thus calculated through iterative multiplications [3]. Therefore, the multiplication is one

of the most fundamental operations in GF(2m).

2.2 Some Concepts in Circuit Layout and Computation

In this section, we illustrate some basic concepts about logic gates and circuits. These

concepts will be used in the remainder of the thesis.

9

2.2.1 The AND Gate and the XOR Gate

The AND gate and the XOR gate implement the addition and multiplication of F2,

respectively. The AND gate is a component that receives two bits as signal source and

outputs the product of the input bits in F2. The XOR gate is a component that receives

two bits as signal source and outputs the sum of the input bits in F2. We represent these

components in Figure 2.1 and 2.2, respectively.

Figure 2.1 – The AND
gate symbol

Figure 2.2 – The XOR
gate symbol

Figure 2.3 – The simpli-
fied XOR gate symbol

In the next chapter, a XOR gate will be illustrated by a simplified figure in which the

input and output bits are represented by circles, as shown in Figure 2.3.

2.2.2 The Space Complexity and the Time Complexity

It takes some time for a circuit to perform a designated task. The time is determined

by the longest path of the circuit from the input to the output. We call such paths the

critical paths, and the length of such paths the depth of circuit.

A circuit in parallel architecture performs multiple operations in every time unit. As

time goes on, the operations produce intermediate results that form successive layers

corresponding to different time units. The number of such layers is equal to the depth of

circuit.

Here, we give an example of bit-parallel operation in Figure 2.4. All the bits are

processed pairwise on each layer. Layer 0 consists of Bit1, Bit2, Bit3, Bit4, Bit5 and Bit6

as the input; Layer 1 consists of C1, C2 and C3; Layer 2 consists of C4 and C3; Layer 3

contains only C5 as the output. One of the longest paths is Bit1⇒C1⇒C4⇒C5, as

10

Figure 2.4 – Illustration of circuit delay

highlighted in red. Therefore, the depth of the example circuit is 3. Let T
⊕

denote the

total delay caused by XOR operations, and T
⊗

the total delay by AND operations. The

example circuit has an overall delay of 2TX +TA with T
⊕

= 2TX and T
⊗

= TA, where

TX and TA denote the XOR gate delay and the AND gate delay, respectively. Formally,

the circuit delay is called the time complexity of circuit.

Normally, each layer of the circuit contains only one type of logic gates, i.e. either

AND gates or XOR gates. It is only the XOR gates that are used when designing a circuit

for evaluating the XOR of all input bits. The process of parallel XOR operation can be

illustrated as an inverted binary tree with bits XORed pairwise on each layer. Each pair

of bits, together with their sum in F2, corresponds to a XOR gate. Suppose there are n

bits to XOR together, then the corresponding binary XOR tree has a depth of dlog2 ne,
and it will take a delay of dlog2 neTX to compute the XOR in parallel.

The area complexity, or the space complexity, is the total number of logic gates in a

circuit. In the rest of the thesis, S
⊗

denotes the number of AND gates in a circuit, and

11

S
⊕

denotes the number of XOR gates in a circuit. For example, there are four XOR gates

plus one AND gate in Figure 2.4, hence the space complexity of the example circuit is

S
⊕

= 4 and S
⊗

= 1.

In this thesis, we analyse the space and time complexities of a multiplier by treating

the multiplicands as two (m−1)-degree polynomials in GF(2m).

2.3 The Ordinary Multiplication Scheme

The ordinary method requires m2 AND gates and near m2 XOR gates [9]. Consider

the case of an even number m and an irreducible polynomial xm+xk+1 where 0≤ k≤ m
2 ,

and let GF(2m) be generated by this polynomial. We calculate A(x) ·B(x) ∈ GF(2m)

where A(x), B(x) ∈ GF(2m) and degA(x) = degB(x) = m− 1. For clarity, we express

A(x) and B(x) as

A(x) = A1(x)x
m
2 +A0(x),

B(x) = B1(x)x
m
2 +B0(x),

respectively, where A0(x), A1(x), B0(x), B1(x) are all of degree m
2 −1. Thus,

A(x)B(x) = (A1(x)x
m
2 +A0(x))(B1(x)x

m
2 +B0(x))

= A1(x)B1(x)xm +(A1(x)B0(x)+B1(x)A0(x))x
m
2 +A0(x)B0(x)

= A1(x)B1(x)(1+ xk)+(A1(x)B0(x)+B1(x)A0(x))x
m
2 +A0(x)B0(x)

= (A1(x)B0(x)+B1(x)A0(x))x
m
2 +A1(x)B1(x)xk︸ ︷︷ ︸

GF(2m) modular reduction required

+(A0(x)B0(x)+A1(x)B1(x)).

Based on the above expression, the corresponding parallel multiplication is shown in

Table 2.I, with a summary of the space and time complexities.

During the past thirty years, some new algorithms have been designed to achieve

higher speed or smaller circuit for implementing GF(2m) multiplication on both software

and hardware.

12

Table 2.I – The procedure of the ordinary multiplication method

Stages Polynomials #AND #XOR Delay

Stage I

P0(x) = A0(x)B0(x) m2

4 (m
2 −1)2

TA + dlog2
m
2 eTX

P1(x) = A0(x)B1(x) m2

4 (m
2 −1)2

P2(x) = A1(x)B0(x) m2

4 (m
2 −1)2

P3(x) = A1(x)B1(x) m2

4 (m
2 −1)2

Stage II
P4(x) = P0(x)+P3(x)+P3(x)xk - 2m+ k−3

2TX
P5(x) = (P1(x)+P2(x))x

m
2 - 3

2m−3

Stage III P4(x)+P5(x) - m−1 TX

2.4 The Montgomery Multiplication Scheme

The Montgomery multiplication scheme was initially introduced by Peter L. Mont-

gomery [14] in 1985 for the integer modular multiplications. It was later in 1998 that the

Montgomery multiplication scheme was adapted by Koç and Acar [15] for performing

the multiplications over GF(2m). Let f (x) be the generating polynomial of GF(2m),

R(x) = xm, f ′(x), R∗(x) be polynomials in F2[x] with degrees smaller than m such

that R(x)R∗(x)+ f (x) f ′(x) = 1, i.e. R∗(x) is the inverse of R(x) in GF(2m). Suppose

A(x), B(x) ∈ GF(2m), the first Montgomery multiplication algorithm over GF(2m) is

given in Algorithm 1:

Algorithm 1 The classic Montgomery multiplication algorithm over GF(2m)

Input: A(x), B(x), R(x), f (x), f ′(x)
Output: A(x)B(x)R∗(x) mod f (x)

1: q(x) = A(x)B(x) f ′(x) mod R(x).
2: Return (A(x)B(x)−q(x) f (x))/R(x).

R(x) is called the Montgomery factor. As we can see, the classic Montgomery multi-

plication algorithm transforms a modulo- f (x) reduction into a modulo-xm reduction plus

a by-xm division, which enables simple and easy implementation. The following exam-

ple, showing the application of Algorithm 1, may better help us understand the usage of

13

the Montgomery multiplication:

Example:

Suppose g(x), f (x) ∈ F2[x], g(x) = x2 + x+ 1 and f (x) = x3 + x2 + 1 (f (x) is

irreducible), calculate g(x)5 mod f (x) by using Algorithm 1.

Solution:

The outline of our solution is: (1) g(x) is transformed as g1(x). (2) Three Mont-

gomery multiplications are consecutively applied. (3) The result O3(x) is trans-

formed.

We calculate g1(x) = g(x)R(x) mod f (x) = 1. We calculate R∗(x) = x2 + x+ 1

and f ′(x) = x2 +1 such that R(x)R∗(x)+ f (x) f ′(x) = 1. Then, based on the binary

form of the exponent (5)2 = (101), we use Algorithm 1 to calculate the following

three Montgomery multiplications in a line:

O1(x) = (g1(x))2R∗(x) mod f (x),

O2(x) = (O1(x))2R∗(x) mod f (x),

O3(x) = O2(x)g1(x)R∗(x) mod f (x).

It can be verified that O3(x) = x2 = g5(x)R(x) mod f (x). Thus,

g5(x) mod f (x) = O3(x)R∗(x) mod f (x)

= x2 · (x2 + x+1) mod x3 + x2 +1

= x2 + x.

The explicit proof for Algorithm 1 can be found in [15]. This algorithm has a lower

time complexity than the ordinary method when performing a large series of multiplica-

tions. As a basic form of multiplication in GF(2m), the Montgomery multiplication has

attracted more and more attentions world-wide today.

Initially, the Montgomery factor was selected as xm for the efficient implementation

of bit-serial Montgomery multipliers [15]. In 2002, Wu slightly generalized the method

in [15] and proposed a bit-parallel Montgomery multiplier based on irreducible trino-

mials [19]. Wu showed that using the mid-term of the expression f (x) = xm + xk + 1,

14

i.e. xk, as the Montgomery factor can help design more efficient bit-parallel multipliers.

Fast and parallel, Wu’s algorithm inspired Hariri and Reyhani-Masoleh to formulate a set

of strategies for designing trinomial-based multipliers as well as pentanomial-based mul-

tipliers [20]. Hariri and Reyhani-Masoleh have proved that choosing the Montgomery

factor R(x) as xm−1 is optimum for constructing bit-serial Montgomery multipliers, while

R(x) = xk or R(x) = xk−1 is the best for constructing bit-parallel Montgomery multipli-

ers. The algorithm of Hariri and Reyhani-Masoleh has the lowest time complexity re-

ported in the literature [9]. It is an interesting coincidence that Fan [8] proposed a shifted

polynomial basis multiplier based on a similar idea to Wu’s [19], which supports Wu’s

choice of the Montgomery factor. Besides, the Montgomery multiplication algorithms

have been investigated with respect to some hardware implementation issues such as

the reliability [17] and the efficiency-area ratio [18]. The former is the chance of well-

functioning against errors in bit-parallel architectures, the latter is the ratio of the speed

to the amount of logic gates in the circuit.

When A(x) = B(x) = ∑
m−1
i=0 aixi, the Montgomery multiplication of A(x) and B(x)

becomes the Montgomery squaring operation of A(x), expressed as:

A2(x)x−u = x−u
m−1

∑
i=0

aix2i (2.1)

Wu [19] has done a thorough research on the trinomial-based Montgomery squaring

operation. For example, suppose both m and k are odd numbers, 1 ≤ k ≤ m−3
2 , f (x) =

xm + xk + 1 generates GF(2m), then the coefficient expression of A2(x)x−k = ∑
m−1
i=0 a′ix

i

is found as:

a′i =



a i
2
+a m+k+i

2
i = 0,2, · · · ,k−1,

a m+k+i
2

i = k+1,k+3, · · · ,m− k−2,

a k−m+i
2

i = m− k,m− k+2 · · · ,m−1,

a k+i
2

i = 1,3, · · · ,k−2,

a k+i
2
+a m+i

2
i = k,k+2, · · · ,m−2,

(2.2)

where the fourth sub-expression, i.e. that for i = 1,3, · · · ,k−2, is neglected when k = 1.

15

It is worthwhile to note that the Montgomery squaring is much easier to implement than

the Montgomery multiplication [19].

2.5 The Divide-and-Conquer Multiplication Schemes

2.5.1 The Karatsuba Algorithm in F2[x]

The Karatsuba algorithm (KA) is one of the most famous divide-and-conquer mul-

tiplication algorithms. The bit-parallel architecture of KA over F2[x] is widely used

for designing bit-parallel multipliers over GF(2m). Here, we briefly introduce the bit-

parallel KA over F2[x].

To be concise, let m be an even integer, A(x) and B(x) two (m−1)-degree polynomi-

als in F2[x]. The Karatsuba scheme partitions A(x) and B(x) into two sub-polynomials,

respectively, such that

A(x) = A1(x)x
m
2 +A0(x),

B(x) = B1(x)x
m
2 +B0(x),

where A0(x), A1(x), B0(x), B1(x) are all of degree m
2 −1.

Hence, the product of A(x) and B(x) is:

A(x)B(x) = (A1(x)x
m
2 +A0(x))(B1(x)x

m
2 +B0(x))

= A1(x)B1(x)xm +(A1(x)B0(x)+B1(x)A0(x))x
m
2 +A0(x)B0(x)

= α(x)xm +β (x)x
m
2 + γ(x),

where α(x) = A1(x)B1(x), γ(x) = A0(x)B0(x), β (x) = (A0(x)+A1(x))(B0(x)+B1(x))−
α(x)− γ(x).

It should be noted that the operation “−” is the same as “+” in F2. According to

the above formula, it is clear that A(x)B(x) can be computed with three (m
2 − 1)-degree

sub-polynomial multiplications at the cost of 2m−1 additional XOR operations.

For a m > 0, let the two multiplicands be of degree m− 1. Let S
⊗
(m), S

⊕
(m)

16

denote the number of AND operations and the number of XOR operations, respectively.

Let T
⊗
(m), T

⊕
(m) denote the delay caused by AND operations and the delay by XOR

operations, respectively. Then we have the following recurrence relation formulae [5]

for the bit-parallel KA: S
⊗
(2) = 3,

S
⊗
(m) = 3S

⊗
(m/2),

 T
⊗
(2) = 1,

T
⊗
(m) = T

⊗
(m/2),

and  S
⊕
(2) = 4,

S
⊕
(m) = 3S

⊕
(m/2)+4m−4,

 T
⊕
(2) = 2,

T
⊕
(m) = T

⊕
(m/2)+3.

For simplicity, suppose m = 2t for some t > 1, then KA can be recursively applied to the

sub-polynomial multiplications of A(x) and B(x), giving rise to the following space and

time complexities for computing A(x)B(x):
S
⊗
(m) = mlog2 3,

S
⊕
(m) = 6mlog2 3−8m+2,

T
⊗
(m) = 1,

T
⊕
(m) = 3log2 m−1,

which shows that a sub-quadratic space complexity can be achieved by paying a loga-

rithmic time complexity.

Elia et al. [23] adapted KA into GF(2m) multiplication and developed an efficient

trinomial-based bit-parallel algorithm, as shown in Table 2.II. Elia’s algorithm is nearly

a quarter less than the other contemporary algorithms in space complexity, but is at least

two TX slower than the fastest algorithms [7] or [20], and is one TX slower than the

ordinary multiplier described in Table 2.I.

2.5.2 The PCHS Algorithm

The PCHS algorithm is similar to the Karatsuba algorithm. Nonetheless, it trans-

forms the multiplicand expressions to make them contain polynomial squaring opera-

17

Table 2.II – Elia’s algorithm on GF(2m) generated by xm + xk +1, m even, 0 < k ≤ m
2

Stages Polynomials #AND #XOR Delay

Stage I
P0(x) = A0(x)+A1(x) - m

2 TX
P1(x) = B0(x)+B1(x) - m

2

Stage II

P2(x) = A0(x)B0(x) m2

4 (m
2 −1)2

TA + dlog2
m
2 eTX

P3(x) = A1(x)B1(x) m2

4 (m
2 −1)2

P4(x) = P0(x)P1(x) m2

4 (m
2 −1)2

P5(x) = P2(x)+P3(x) - m−1

Stage III
P6(x) = P4(x)+P5(x) - m−1

TX
P7(x) = xkP3(x) - k−1

Stage IV
P8(x) = x

m
2 P6(x) - m

2 −2
TX

P9(x) = P5(x)+P7(x) - m−2

Stage V P8(x)+P9(x) - m TX

tions, as squaring operations can be done very efficiently in general.

Let A(x) = ∑
m−1
i=0 aixi and B(x) = ∑

m−1
i=0 bixi be two polynomials in GF(2m). With m

being an odd number, the PCHS algorithm partitions A(x),B(x) into

A(x) = A2
1(x)+ xA2

2(x) and B(x) = x−1B2
1(x)+B2

2(x),

respectively, where

A1(x) =
(m−1)/2

∑
i=0

a2ixi, A2(x) =
(m−3)/2

∑
i=0

a2i+1xi,

B1(x) =
(m−1)/2

∑
i=1

b2i−1xi, B2(x) =
(m−1)/2

∑
i=0

b2ixi.

18

Then we have

A(x)B(x) = (A2
1(x)+ xA2

2(x)(x
−1B2

1(x)+B2
2(x))

= x−1(A1(x)B1(x))2+x(A2(x)B2(x))2

+(A1(x)B2(x))2+(A2(x)B1(x))2

= x−1(A1(x)B1(x))2+x(A2(x)B2(x))2+(A1(x)B1(x))2

+(A2(x)B2(x))2 +[(A1(x)+A2(x))(B1(x)+B2(x))]
2

= (x−1 +1)(A1(x)B1(x))2 +(x+1)(A2(x)B2(x))2

+[(A1(x)+A2(x))(B1(x)+B2(x))]
2 .

(2.3)

Somewhat similar to the Karatsuba algorithm, (2.3) contains three sub-polynomial

multiplications, three polynomial squaring operations, and a few extra polynomial multi-

plications and additions. It is the usage of efficient GF(2m) squaring techniques in (2.3)

that can make the PCHS algorithm efficient. In the next chapter, we present the new

bit-parallel GF(2m) Montgomery multiplication algorithm that derives from the original

PCHS algorithm while using the Montgomery squaring formulae.

19

CHAPTER 3

NEW FIELD MULTIPLICATION USING MONTGOMERY SQUARING

OPERATION

In this chapter, we present a new Montgomery multiplication algorithm for the Ga-

lois fields generated by trinomials. Although this new algorithm is based on the previ-

ously introduced PCHS algorithm, it differs from the original PCHS algorithm in that

it requires a simpler GF(2m) squaring operation method than that used by the original

PCHS algorithm.

Wu has given explicit formulae for the ordinary squaring operation [9] and the Mont-

gomery squaring operation [19], respectively, on the Galois fields generated by trinomi-

als. In Wu’s work, the Montgomery squaring operation is found to be simpler than

the ordinary squaring operation with respect to their space and time complexities [19].

Therefore, our algorithm uses the Montgomery squaring operation.

3.1 Our Proposal

Let f (x) = xm +xk +1 generate GF(2m). From now on, we only use the polynomial

basis for representing the elements in GF(2n). Besides, we only consider f (x) = xm +

xk + 1 with 1 ≤ k ≤ m
2 . We can always find such irreducible trinomials, if there exist

irreducible trinomials of degree m. This is due to the so-called “Reciprocal Property”

[6]: If a trinomial xm+xk +1 with k > m
2 is irreducible, then the trinomial xm+xm−k +1

is also irreducible.

Let A(x), B(x) ∈ GF(2m):

A(x) = am−1xm−1 +am−2xm−2 + · · ·+a1x+a0,

B(x) = bm−1xm−1 +bm−2xm−2 + · · ·+b1x+b0,

where ai, bi ∈ GF(2). Let the Montgomery factor be R(x) = xu (1≤ u < m), the Mont-

20

gomery multiplication of A(x) and B(x) over GF(2m) is:

A(x)B(x)x−u. (3.1)

As the PCHS algorithm was originally designed for GF(2m) with odd m, in our algo-

rithm, we first assume the generating trinomial to be of odd degree.

We split A(x),B(x) according in the way of the PCHS algorithm:

A(x) = A2
1(x)+ xA2

2(x), B(x) = x−1B2
1(x)+B2

2(x),

where

A1(x) =

m−1
2

∑
i=0

a2ixi, A2(x) =

m−3
2

∑
i=0

a2i+1xi,

B1(x) =

m−1
2

∑
i=1

b2i−1xi, B2(x) =

m−1
2

∑
i=0

b2ixi.

The corresponding Montgomery multiplication formula is:

A(x)B(x)x−u = [x−1(A1(x)B1(x))2 + x(A2(x)B2(x))2 +(A1(x)B1(x))2

+(A2(x)B2(x))2 +(A1(x)+A2(x))2(B1(x)+B2(x))2]x−u

= (A1(x)B1(x))2x−u(1+x−1)+(A2(x)B2(x))2x−u(1+ x)

+((A1(x)+A2(x))(B1(x)+B2(x)))2x−u,

(3.2)

which contains the Montgomery squaring of A1(x)B1(x), the Montgomery squaring of

A2(x)B2(x), and that of (A1(x)+A2(x))(B1(x)+B2(x)).

It is worth noting that the choice of the Montgomery factor xu has a direct influence

on the efficiency of the related Montgomery squaring operation. Hariri and Reyhani-

Masoleh have found the optimum Montgomery factors for constructing a trinomial-

based Montgomery multiplier [20]. We provide their conclusion in the following lemma:

Lemma 3.1.1 ([20]). Let f (x) = xm+xk +1 be an irreducible trinomial over F2. On the

21

Galois field generated by f (x), in order to achieve the fewest possible XOR operations

required by a Montgomery multiplication, the exponent in the Montgomery factor xu, i.e.

u, should be chosen in the following way:

u =

1, k = 1,

k or k−1, k > 1.
(3.3)

One can refer to Section 5 in [20] for further details of the above lemma. For conve-

nience, we let our Montgomery factor be xk as used by Wu in [19].

The following symbols and definitions are crucial to the construction of the new

multiplier, and will be frequently used throughout the discussions:

C(x) = A1(x)B1(x) =
m−1

∑
i=0

cixi, D(x) = A2(x)B2(x) =
m−1

∑
i=0

dixi,

Z(x) = (C(x))2x−k =
m−1

∑
i=0

zixi, Z′(x) = (D(x))2x−k =
m−1

∑
i=0

z′ix
i,

S1(x) = Z(x)(1+ x−1) =
m−1

∑
i=0

rixi, S2(x) = Z′(x)(1+ x) =
m−1

∑
i=0

sixi;

U(x) = A1(x)+A2(x) =

m−1
2

∑
i=0

uixi, V (x) = B1(x)+B2(x) =

m−1
2

∑
i=0

vixi,

E(x) =U(x)V (x) =
m−1

∑
i=0

eixi, S3(x) = (E(x))2x−k =
m−1

∑
i=0

tixi.

(3.4)

In our algorithm, C(x), D(x), U(x) and V (x) are directly computed from the sub-polynomials

of A(x) and B(x). Polynomials C(x) and D(x) are used for representing S1(x)+ S2(x),

while U(x) and V (x) are used for computing S3(x). It is important to note that no

polynomial modular operation is required for computing A1(x)B1(x), A2(x)B2(x) and

U(x)V (x). Also, remember that c0 = 0 and dm−1 = 0.

From the expression in (3.2) and the definitions in (3.4), our Montgomery multipli-

cation of A(x) and B(x) can be expressed as

A(x)B(x)x−k = S1(x)+S2(x)+S3(x).

22

We outline the new Montgomery multiplication algorithm as follows:

Algorithm 2 The new bit-parallel Montgomery multiplication algorithm

Input: GF(2m) generated by f (x) = xm + xk +1. A(x), B(x) ∈ GF(2m).
Output: A(x)B(x)x−k ∈ GF(2m).

1: Transform A(x)B(x)x−k into a sum of S1(x), S2(x) and S3(x) according to (3.2).
2: Combine C(x) with D(x) to partly compute S1(x)+S2(x). In the meantime, compute

S3(x) explicitly.
3: Compute S1(x)+S2(x)+S3(x).

In the following sections, firstly, we show how to compute C(x) and D(x) in parallel

and then use their coefficients to express the coefficients of S1(x)+S2(x). It is important

to note that the coefficients of S1(x)+S2(x) will not be evaluated explicitly; instead, they

will be expressed as XORs of the coefficients of C(x) and D(x), and then be partially

computed. Secondly, we discuss our method for computing S3(x) at the same time with

the partial computation of S1(x)+S2(x). Finally, we compute S1(x)+S2(x)+S3(x) and

provide the overall computation sequence. For simplicity, we may sometimes denote the

polynomials by the capital letters only, e.g. A1(x) may be sometimes denoted by A1.

3.2 The Complexities for Computing C(x) and D(x)

In this section, we analyse the time and space complexities for computing both

C(x) = A1(x)B1(x) and D(x) = A2(x)B2(x). Following the rule of polynomial multi-

plication in F2[x], the coefficients of C(x) are expressed as:

ci =


0, i = 0,

∑
i−1
j=0 a2 jb2(i− j)−1, 1≤ i≤ m−1

2 ,

∑

m−1
2

j=i−m−1
2

a2 jb2(i− j)−1,
m+1

2 ≤ i≤ m−1.

(3.5)

Table 3.I presents the gate numbers and time delays required for computing every coef-

ficient of C(x).

One one hand, a total of S
⊗
(C(x)) = m2−1

4 AND gates and S
⊕
(C(x)) = m2−4m+3

4

XOR gates are required for computing C(x), as shown in the last row of Table 3.I. On

23

Table 3.I – The space and time complexities for computing C(x)

ci #AND #XOR Delay

c0 = 0 0 0 -

c1 = a0b1 1 0 TA

c2 = a0b3 +a2b1 2 1 TA +TX
...

...
...

...

c m−1
2

= a0bm−2 + · · ·+am−3b1
m−1

2
m−3

2 TA +(dlog2(
m−1

2)e)TX

c m+1
2

= a2bm−2 + · · ·+am−1b1
m−1

2
m−3

2 TA +(dlog2(
m−1

2)e)TX
...

...
...

...

cm−1 = am−1bm−2 1 0 TA

Total m2−1
4

m2−4m+3
4 TA + dlog2

(m−1
2

)
eTX

the other hand, it takes two steps to compute all the coefficients of C(x) in parallel. First,

it takes a delay of T
⊗
(C(x)) = TA to compute all the aib j terms simultaneously. Second,

it takes T
⊕
(C(x)) = dlog2

(m−1
2

)
eTX to compute all the coefficients of C(x) by XORing

up the corresponding aib j terms in parallel. It is the computation of c m−1
2

or c m+1
2

that

requires the largest delay among all the coefficients of C(x), as shown in the last column

of Table 3.I. Thus, the total delay for computing C(x) is

Delay(C(x)) = T
⊗
(C(x))+T

⊕
(C(x)) = TA +

⌈
log2

(
m−1

2

)⌉
TX .

D(x) is similarly computed during the computation of C(x). The time and space

complexities for computing both C(x) and D(x) are:

S
⊗
(C(x)) or S

⊗
(D(x)): m2−1

4 ,

S
⊕
(C(x)) or S

⊕
(D(x)): m2−4m+3

4 ,

Delay(C(x) and D(x)): TA +
⌈
log2

(m−1
2

)⌉
TX .

(3.6)

24

3.3 The Representation of S1(x)+S2(x) by C(x) and D(x)

It is clear from (3.4) that the expressions of S1(x) and S2(x) are based on the Mont-

gomery squarings of C(x) and D(x), respectively. In order to use the appropriate Mont-

gomery squaring formulae for C(x) and D(x), we need to consider four cases regarding

the generating polynomial f (x) = xm + xk +1, given that m is odd:

1. k is odd, 1≤ k ≤ m−3
2 ,

2. k is odd, k = m−1
2 ,

3. k is even, 1≤ k ≤ m−3
2 ,

4. k is even, k = m−1
2 .

For simplicity, we only present a detailed discussion about the new multiplier in the

first case when m is odd, k is odd, and 1≤ k ≤ m−3
2 .

Case 1: It can be verified from (3.4) that Z(x) is the Montgomery squaring of C(x),

hence Z(x) has the following coefficient expression according to (2.2):

zi =



c i
2
+ c m+k+i

2
, i = 0,2, · · · ,k−1,

c m+k+i
2

, i = k+1,k+3, · · · ,m− k−2,

c k−m+i
2

, i = m− k,m− k+2 · · · ,m−1,

c k+i
2
, i = 1,3, · · · ,k−2,

c k+i
2
+ c m+i

2
, i = k,k+2, · · · ,m−2.

(3.7)

25

Since xm + xk + 1 = 0, it follows that x−1 = xm−1 + xk−1. Then, S1(x) can be trans-

formed as:

S1(x) = (1+ x−1)Z(x) mod f (x)

= (1+ x−1)
m−1

∑
i=0

zixi mod f (x)

= (zk−1 + zk + z0)xk−1 +(zm−1 + z0)xm−1 + ∑
0≤ i≤ m−2

i 6= k−1

(zi + zi+1)xi

=
m−1

∑
i=0

rixi.

Substituting (3.7) into the above expression, we get the coefficient expression of

S1(x):

ri =



c i
2
+ c m+k+i

2
+ c k+i+1

2
, i = 0,2, · · · ,k−1,

c m+k+i
2

+ c k+i+1
2

+ c m+i+1
2

, i = k+1,k+3, · · · ,m− k−2,

c k−m+i
2

+ c k+i+1
2

+ c m+i+1
2

, i = m− k,m− k+2, · · · ,m−3,

c k−1
2
+ c m+k

2
, i = m−1,

c k+i
2
+ c i+1

2
+ c m+k+i+1

2
, i = 1,3, · · · ,k−2,

c k+i
2
+ c m+i

2
+ c m+k+i+1

2
, i = k,k+2, · · · ,m− k−3,

c k+i
2
+ c m+i

2
+ c k−m+i+1

2
, i = m−k−1,m−k+1, · · · ,m−2.

(3.8)

26

We can similarly obtain the coefficient expression of S2(x). Since Z′(x) is the Mont-

gomery squaring of D(x), we have:

z′i =



d i
2
+d m+k+i

2
, i = 0,2, · · · ,k−1,

d m+k+i
2

, i = k+1,k+3, · · · ,m− k−2,

d k−m+i
2

, i = m− k,m− k+2 · · · ,m−1,

d k+i
2
, i = 1,3, · · · ,k−2,

d k+i
2
+d m+i

2
, i = k,k+2, · · · ,m−2.

(3.9)

S2(x) can be transformed as:

S2(x) = (1+ x)Z(x) mod f (x)

= (1+ x)
m−1

∑
i=0

z′ix
i mod f (x)

= (z′k + z′k−1 + z′m−1)x
k +(z′m−1 + z′0)+ ∑

1≤ i≤ m−1
i 6= k

(z′i + z′i−1)x
i

=
m−1

∑
i=0

sixi.

Substituting (3.9) into the above expression, we get the coefficient expression of S2(x):

si =



d i
2
+d m+k+i

2
+d k+i−1

2
, i = 0,2, · · · ,k−1,

d m+k+i
2

+d k+i−1
2

+d m+i−1
2

, i = k+1,k+3, · · · ,m− k−2,

d k−m+i
2

+d k+i−1
2

+d m+i−1
2

, i = m− k,m− k+2, · · · ,m−1,

d k+i
2
+d i−1

2
+d m+k+i−1

2
, i = 1,3, · · · ,k−2,

d k+i
2
+d m+i

2
+d m+k+i−1

2
, i = k,k+2, · · · ,m− k−1,

d k+i
2
+d m+i

2
+d k−m+i−1

2
, i = m−k+1,m−k+3, · · · ,m−2.

(3.10)

27

Based on (3.8) and (3.10), every coefficient of S1(x)+S2(x) can be expressed as a XOR

of certain coefficients of C(x) and D(x):

ri + si =



c i
2
+ c m+k+i

2
+ c k+i+1

2
+d i

2

+d m+k+i
2

+d k+i−1
2

, i = 0,2, · · · ,k−1,

c m+k+i
2

+ c k+i+1
2

+ c m+i+1
2

+d m+k+i
2

+d k+i−1
2

+d m+i−1
2

, i = k+1,k+3, · · · ,m− k−2,

c k−m+i
2

+ c k+i+1
2

+ c m+i+1
2

+d k−m+i
2

+d k+i−1
2

+d m+i−1
2

, i = m− k,m− k+2, · · · ,m−3,

c k−1
2
+ c m+k

2
+d k−1

2
+d k+m−2

2
, i = m−1,

c k+i
2
+ c i+1

2
+ c m+k+i+1

2

+d k+i
2
+d i−1

2
+d m+k+i−1

2
, i = 1,3, · · · ,k−2,

c k+i
2
+ c m+i

2
+ c m+k+i+1

2

+d k+i
2
+d m+i

2
+d m+k+i−1

2
, i = k,k+2, · · · ,m− k−3,

c m−1
2

+ c 2m−k−1
2

+d m−1
2

+d 2m−k−1
2

, i = m− k−1,

c k+i
2
+ c m+i

2
+ c k−m+i+1

2

+d k+i
2
+d m+i

2
+d k−m+i−1

2
, i = m− k+1,m− k+3, · · · ,m−2.

When k = 1, the above coefficient expression holds with the fifth case, i.e. that for i =

1,3, · · ·k−2, being neglected.

We can just follow the same line as above to discuss the other three cases regarding

the generating polynomial f (x) = xm + xk + 1. The coefficient expressions of S1(x)+

S2(x) in the other three cases are presented in Appendix I.

3.4 The Computation of S3(x)

S3(x) is computed at the same time with the partial computation of S1(x)+ S2(x).

In this section, we provide an explicit analysis of the space and time complexities for

28

computing S3(x) = E2(x)x−k on GF(2m) where m is odd, k is odd, and 1≤ k ≤ m−3
2 .

According to (3.4) and the rule of polynomial multiplication in F2[x], the coefficient

expression of E(x) is:

ei =

∑
i
j=0 u jvi− j, 0≤ i≤ m−1

2 ,

∑

m−1
2

j=i−m−1
2

u jvi− j,
m+1

2 ≤ i≤ m−1.
(3.11)

S3(x) is the Montgomery squaring of E(x), with its coefficients expressed as:

ti =



e i
2
+ e m+k+i

2
, i = 0,2, · · · ,k−1,

e m+k+i
2

, i = k+1,k+3, · · · ,m− k−2,

e k−m+i
2

, i = m− k,m− k+2 · · · ,m−1,

e k+i
2
, i = 1,3, · · · ,k−2,

e k+i
2
+ e m+i

2
, i = k,k+2, · · · ,m−2.

(3.12)

3.4.1 A New Method for Computing S3(x) Using a XOR-Gate-Saving Strategy

We take a new approach to compute S3(x) without computing E(x) explicitly. With-

out loss of generality, let us consider 3≤ k≤ m−3
2 first. By substituting (3.11) into (3.12),

every coefficient of S3(x) is expressed as a XOR of certain uiv j terms. In Table 3.II, in

the two columns under the title “#XOR”, the number of XOR operations related to every

coefficient of S3(x) are listed.

Our new method takes three steps to compute S3(x): (1) to compute {ui | 0 ≤ i ≤
m−1

2 } and {vi | 0 ≤ i ≤ m−1
2 } at the same time, (2) to compute {uiv j | 0 ≤ i, j ≤ m−1

2 }
all at once, and (3) to compute {ti | 0 ≤ i ≤ m− 1} in parallel by XORing together the

corresponding terms in {uiv j | 0≤ i, j≤ m−1
2 }, as indicated by the ti expressions in Table

3.II.

A number of redundant XOR gates are discovered in the step (3). For example,

look at the parallel computation of t0 and tk. Since t0 = e0 + e m+k
2

and tk = ek + e m+k
2

,

a term e m+k
2

exists in both the expressions of t0 and tk. As expressed in (3.11), e m+k
2

is

29

Table 3.II – The initial XOR numbers between uiv j terms for each of the coefficients of
S3(x) (k ≥ 3)

i ti #XOR i ti #XOR

0 u0v0+∑

m−1
2

j= k+1
2

u jv m+k
2 −j

m−k
2 1 ∑

k+1
2

j=0 u jv k+1
2 −j

k+1
2

2 u0v1+u1v0+∑

m−1
2

j= k+3
2

u jv m+k
2 +1−j

m−k
2 3 ∑

k+3
2

j=0 u jv k+1
2 +1−j

k+3
2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

k−1 ∑

k−1
2

j=0 u jv k−1
2 −j

+∑

m−1
2

j=k u jv m−1
2 +k−j

m−k
2 k−2 ∑

k−1
j=0 u jvk−1−j k−1

k+1 ∑

m−1
2

j=k+1 u jv m−1
2 +k+1−j

m−1
2 −k−1 k ∑

k
j=0 u jvk−j+∑

m−1
2

j= k+1
2

u jv m+k
2 −j

m+k
2

k+3 ∑

m−1
2

j=k+2 u jv m−1
2 +k+2−j

m−1
2 −k−2 k+2 ∑

k+1
j=0 u jvk+1−j+∑

m−1
2

j= k+3
2

u jv m+k
2 +1−j

m+k
2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m−k−2 u m−1
2

v m−1
2

0 m−k−1 ∑

m−1
2

j=0 u jv m−1
2 −j

+∑

m−1
2

j= m−k
2

u jvm−k+1
2 −j

m+k
2

m−k u0v0 0 m−k+1 ∑

m−1
2

j=1 u jv m+1
2 −j

+∑

m−1
2

j= m−k
2 +1

u jvm−k−1
2 −j

m+k
2 −2

m−k+2 u0v1+u1v0 1 m−k+3 ∑

m−1
2

j=2 u jv m+3
2 −j

+∑

m−1
2

j= m−k
2 +2

u jvm−k−3
2 −j

m+k
2 −4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m−1 ∑

k−1
2

j=0 u jv k−1
2 −j

k−1
2 m−2 ∑

m−1
2

j= k−1
2

u jv m+k
2 −1−j

+u m−1
2

v m−1
2

m−k
2 +1

equal to ∑

m−1
2

j= k+1
2

u jv m+k
2 − j which has m−k

2 addends. Without loss of generality, suppose

the number of addends m−k
2 is odd, then the first step of bit-parallel XOR operation for

computing t0 and tk is expressed as follows:

t0 =[u k+1
2

v m−1
2

+u k+3
2

v m−3
2
]+ [u k+5

2
v m−5

2
+u k+7

2
v m−7

2
]

+ · · ·+[u m−5
2

v k+5
2
+u m−3

2
v k+3

2
]+ [u m−1

2
v k+1

2
+u0v0],

(3.13)

and

tk =[u k+1
2

v m−1
2

+u k+3
2

v m−3
2
]+ [u k+5

2
v m−5

2
+u k+7

2
v m−7

2
]

+ · · ·+[u m−5
2

v k+5
2
+u m−3

2
v k+3

2
]+ [u m−1

2
v k+1

2
+u0vk]

+ [u1vk−1 +u2vk−2]+ · · ·+[uk−1v1 +ukv0].

(3.14)

Every pair of the above square brackets corresponds to a XOR gate on Layer 0 of the cor-

responding XOR tree. All the XORs in the above brackets are evaluated simultaneously

30

in a delay of one TX .

The processes for computing t0 and tk are illustrated in Figure 3.1 and Figure 3.2,

respectively. The coefficient t0 is computed with the binary XOR tree (a). The uiv j

terms of (3.13) correspond to the circles on Layer 0 of (a), while the XOR outputs in the

square brackets of (3.13) correspond to the circles on Layer 1 of (a). In the tree (a), all

the bits on the same layer are XORed pairwise to obtain the bits on the next layer, until

Layer dlog2(
m−k+2

2)e is reached where t0 is evaluated. Meanwhile, tk is computed in the

same way as illustrated in Figure 3.2.

Figure 3.1 – The binary XOR tree (a)
related to t0

Figure 3.2 – The binary XOR tree (b)
related to tk

In the above two binary XOR trees, we use black circles to represent the overlapping

bits resulting from the XOR expression of e m+k
2

, i.e. the common term in t0 = e0 + e m+k
2

and tk = ek + e m+k
2

. It is clear that the two binary XOR trees have the same inputs for

their respective first bm−k
4 c XOR gates on Layer 0. In other words, the first bm−k

4 c XOR

gates on Layer 0 of the tree (b) are redundant. These redundant XOR gates can thus be

eliminated. Consequently, we eliminate the higher-layer XOR gates in the tree (b) that

are fully based on the outputs of the Layer-0 redundant XOR gate. As a result, bm−k
2`+2 c

XOR gates are eliminated on Layer ` of the tree (b), where 0≤ `≤ h := blog2(m−k)c−
2. Thus, a total of ⌊

m− k
4

⌋
+

⌊
m− k

8

⌋
+ · · ·+

⌊
m− k

2blog2(m−k)c

⌋

31

redundant XOR gates can be eliminated from the sub-circuit for tk.

Look at an example based on f (x) = x17 + x3 + 1 ∈ F2[x] with m = 17 and k = 3.

It can be verified from (3.11) and (3.12) that t0 = e0 + e10 and t3 = e3 + e10. Both the

expressions of t0 and t3 contain e10:

e10 = u2v8 +u3v7 +u4v6 +u5v5 +u6v4 +u7v3 +u8v2,

which is a XOR of seven bits. Since
⌊m−k

4

⌋
+
⌊m−k

8

⌋
=4, four XOR gates can be elimi-

nated from the sub-circuit for t3.

Figure 3.3 gives a full detail of our bit-reusing trick to the above example. There

Figure 3.3 – Illustration of our bit-reusing trick between the binary XOR trees

are two binary XOR trees in this figure. The tree on the left computes t3, while the tree

on the right computes t0. Each circle represents a bit. The seven bits u2v8, u3v7, u4v6,

u5v5, u6v4, u7v3, u8v2 are depicted as seven dark circles, respectively, from left to right

on Layer 0 of both of the trees. We have eleven dark circles encircled in both of the

trees to indicate the overlapping bits. Surrounded in red circles, the four XOR gates are

eliminated from the tree computing t3. The two bits marked with “R”, representing the

values of u6v4 + u7v3 and u2v8 + u3v7 + u4v6 + u5v5, respectively, are transmitted from

the right tree to the left tree. Becoming the inputs for the two XOR gates in blue circles,

32

the two bits marked with “R” take over the positions of the two bits marked with “L”,

respectively, which ensures a proper calculation of t3. Generally, a bit can be transmitted

by being rewired out as an input for another gate, at no additional cost of logic gates.

It can be generalized from the above discussion that if two binary XOR trees have i

input bits in common at Layer 0, then a total of⌊
i
2

⌋
+

⌊
i
4

⌋
+ · · ·+

⌊
i

2blog2 ic

⌋
(3.15)

XOR gates can be saved from one of the trees. Equation (3.15) can be further simplified

by using Proposition 3.4.2, which uses the notion of Hamming weight.

Definition 3.4.1. The Hamming weight of an integer is the number of “1”s in the binary

representation of the integer. For example, the integer 107 has its binary representation

(107)2 = (1101011),

thus 107 has a Hamming weight of 5.

Proposition 3.4.2. Let W (i) be the Hamming weight of an integer i. Suppose i = 2n1 +

2n2 + · · ·+ 2nt , where n1 > n2 > · · · > nt ≥ 0. Note that i can always be written in this

form and blog2 ic= n1. Then⌊
i
2

⌋
+

⌊
i
4

⌋
+ · · ·+

⌊
i

2n1

⌋
= i−W (i)

33

Proof. We can write:⌊
i
2

⌋
= 2n1−1 +2n2−1 + · · ·+2nt−1,⌊

i
4

⌋
= 2n1−2 +2n2−2 + · · ·+2nt−2,

...⌊
i

2nt

⌋
= 2n1−nt +2n2−nt + · · ·+2nt−1−nt +20,

...⌊
i

2n1

⌋
= 1.

The sum of the expressions on the left of the above equality signs is:⌊
i
2

⌋
+

⌊
i
4

⌋
+ · · ·+

⌊
i

2n1

⌋
, (3.16)

and the sum of the expressions on the right of the equality signs is:

(2n1−1 +2n1−2 + · · ·+1)+(2n2−1 +2n2−2 + · · ·+1)

+ · · ·+(2nt−1 +2nt−2 + · · ·+1)

= (2n1−1)+(2n2−1)+ · · ·+(2nt −1)

= (2n1 +2n2 + · · ·+2nt)− (1+1+ · · ·+1)︸ ︷︷ ︸
The number of “1”s is W(i)

,

(3.17)

which is i−W (i) by definition. Thus, combining (3.16) and (3.17) we get⌊
i
2

⌋
+

⌊
i
4

⌋
+ · · ·+

⌊
i

2n1

⌋
= i−W (i).

Suppose two binary XOR trees have i bits in common on Layer 0, according to

Proposition 3.4.2, there are i−W (i) XOR gates that can be eliminated from one of the

binary XOR trees by applying our bit-reusing trick.

34

The coefficients containing redundant XOR operations are gathered in Table 3.III.

Given a subscript i in the first column, there is a corresponding subscript j in the second

column, which implies that ti and t j have common addends in their expressions. The

third column shows the amount of redundant XOR gates to be eliminated from the sub-

circuit for ti. For example, the overlap between the binary XOR trees for tk and t0 leads

to the elimination of m−k
2 −W (m−k

2) XOR gates. It should be noted that our bit-reusing

trick does not change the depth of circuit. After the removal of redundant XOR gates, the

delays for computing {ti | i= 0, 2, · · · , k−1, k, k+2, · · · , m−2} are still determined by

the corresponding expressions in Table 3.II, as reflected by the last column in Table 3.III.

Table 3.III – The S3(x) coefficients containing redundant XOR operations (k ≥ 3)

i j #XOR saved Delay(ti)

0 m− k 1−W (1) dlog2(
m−k

2 +1)eTX

2 m− k+2 2−W (2) dlog2(
m−k

2 +1)eTX
...

...
...

...

k−1 m−1 k+1
2 −W (k+1

2) dlog2(
m−k

2 +1)eTX

k 0 m−k
2 −W (m−k

2) dlog2(
m+k

2 +1)eTX

k+2 2 m−k
2 −1−W (m−k

2 −1) dlog2(
m+k

2 +1)eTX
...

...
...

...

m− k−1 m−2k−1 k+1
2 −W (k+1

2) dlog2(
m+k

2 +1)eTX

m− k+1 m−2k+1 k−1
2 −W (k−1

2) dlog2(
m+k

2 −1)eTX

m− k+3 m−2k+3 k−3
2 −W (k−3

2) dlog2(
m+k

2 −3)eTX
...

...
...

...

m−2 m− k−2 1−W (1) dlog2(
m−k

2 +2)eTX

Based on Table 3.II and Table 3.III, an explicit analysis of the space and time com-

plexities for computing S3(x) is given as follows.

35

3.4.2 Summary of the Space Complexity Analysis of S3(x)

On one hand, the number of AND gates used for calculating S3(x) is equal to the

cardinality of {uiv j | 0≤ i, j ≤ m−1
2 }:

S
⊗
(S3) =

∣∣∣∣{uiv j | 0≤ i, j ≤ m−1
2
}
∣∣∣∣

=

∣∣∣∣{i | 0≤ i≤ m−1
2
}
∣∣∣∣ · ∣∣∣∣{ j | 0≤ j ≤ m−1

2
}
∣∣∣∣

=
(m+1)2

4
.

On the other hand, when 3 ≤ k ≤ m−3
2 , the XOR gates for calculating S3(x) are

divided into two parts: (1) the m− 1 XOR gates for computing {ui | 0 ≤ i ≤ m−3
2 } and

{v j | 1≤ j ≤ m−1
2 }, (2) the total XOR gates shown in Table 3.II in the column “#XOR”

excluding the redundant XOR gates shown in Table 3.III in the column “#XOR saved”.

Therefore, the number of XOR gates used for computing S3(x) is:

S
⊕
(S3) = (m−1)+

(
k+1

2

)(
m− k

2

)
+

m−1
2 −k

∑
i=1

(
m−1

2
− k− i

)
+

k−1
2

∑
i=0

i

+
k−1

∑
i= k+1

2

i+
(

m−2k+1
2

)(
m+ k

2

)
+

k−1
2

∑
i=1

(
m+ k

2
−2i

)

−

 k+1
2

∑
i=1

(i−W (i))+

m−k
2

∑
i=1

(i−W (i))


=

m2 +2m−3
4

+

k+1
2

∑
i=1

W (i)+

m−k
2

∑
i=1

W (i).

(3.18)

By neglecting the part for t1, t3, · · · , tk−2 in Table 3.II, as well as that for tm−k+1,

tm−k+3,· · · , tm−2 in Table 3.III, it can be similarly verified that when k = 1, S
⊕
(S3) =

(m+1)2

4 +∑

m−1
2

i=1 W (i). Thus, when 1≤ k≤ m−3
2 , S

⊕
(S3)=

m2+2m−3
4 +∑

k+1
2

i=1 W (i)+∑

m−k
2

i=1 W (i).

Thus, with respect to the number of AND gates and the number of XOR gates, the

36

space complexity for computing S3(x) is:

S
⊗
(S3) : (m+1)2

4 ,

S
⊕
(S3) : m2+2m−3

4 +∑

k+1
2

i=1 W (i)+∑

m−k
2

i=1 W (i).
(3.19)

3.4.3 Summary of the Time Complexity Analysis of S3(x)

The parallel computation of all the coefficients of S3(x) takes place in three steps.

Firstly, it takes one TX to get {ui | 0≤ i≤ m−1
2 } and {vi | 0≤ i≤ m−1

2 }. Secondly, it takes

one TA to get {uiv j | 0≤ i, j≤ m−1
2 }. Finally, all the coefficients of S3(x) are computed in

parallel by XORing up the corresponding uiv j terms. Among all the coefficients of S3(x)

shown in Table 3.II, {ti | k≤ i≤m−k−1, i is odd} have the XOR expressions with the

most addends, i.e. m+k+2
2 bits to XOR up. Hence, a delay of dlog2

m+k+2
2 eTX is incurred

by the third step. In summary, T
⊗
(S3(x)) = TA, T

⊕
(S3(x)) =

(
1+
⌈
log2

m+k+2
2

⌉)
TX .

The total delay for computing S3(x) is T
⊗
(S3(x))+T

⊕
(S3(x)), i.e.

Delay(S3(x)) : TA +
(
1+
⌈
log2

m+k+2
2

⌉)
TX . (3.20)

3.5 The Full Computation Sequence and the Overall Complexity Analysis

In order to complete the Montgomery multiplication A(x)B(x)x−k, it is necessary to

combine the expressions of S3(x) and S1(x)+ S2(x). In this section, we give a detailed

discussion about the full computation sequence of A(x)B(x)x−k in the case when m is

odd, k is odd and k ≤ m−3
2 .

The overall computation sequence for the Montgomery multiplication

A(x)B(x)x−k = S1(x)+S2(x)+S3(x)

is shown in Table 3.IV. The whole process of our algorithm consists of two parts, with

each part having three stages. Let us assume that Part I is for S3(x), and Part II is for

S1(x)+S2(x). Part I and Part II are processed in parallel from Stage I to Stage II, then,

37

the two parts are combined together in Stage III for completing the remainder of the

XOR operations.

Table 3.IV – The computation sequence in the case when m, k is odd, k ≤ m−3
2

Parts� Stages I II III
I U = A1 +A2, V = B1 +B2︸ ︷︷ ︸

Delay: 1TX

S3 = (UV)2x−k︸ ︷︷ ︸
TA+dlog2

m+k+2
2 eTX

[S1 +S2]+S3︸ ︷︷ ︸
2TX

II C = A1B1, D = A2B2︸ ︷︷ ︸
Delay: TA+dlog2

m−1
2 eTX

[S1 +S2]︸ ︷︷ ︸
1TX

It should be noted that the delay for computing S3(x) is at least one TX longer than

that for computing both C(x) and D(x). Look at Table 3.IV. In Part I, it takes one

TX to compute U(x) and V (x) in Stage I, and then TA + dlog2
m+k+2

2 eTX to compute

S3(x) = (U(x)V (x))2x−k in Stage II. Meanwhile, in Part II, it takes TA + dlog2
m−1

2 eTX

to compute C(x) and D(x) in Stage I. Hence, the length of Stage II of Part II is the

difference between the delay for computing S3(x) and that for both C(x) and D(x):

Length(Stage II of Part II) =
(

TA +TX +

⌈
log2

m+ k+2
2

⌉
TX

)
−
(

TA +

⌈
log2

m−1
2

⌉
TX

)
= TX +

⌈
log2

m+ k+2
2

⌉
TX −

⌈
log2

m−1
2

⌉
TX

≥ TX ,

which means Stage II of Part II is an interval at least as long as one TX .

Therefore, in Stage II of Part II, we can take one TX to perform a single step of

parallel XOR operation between the coefficients of S1(x) and S2(x). Such operation is

expressed by [S1 +S2] in Stage II of Part II, which means to do all the XOR operations

38

inside the following square brackets simultaneously:

ri + si =



[c i
2
+ c m+k+i

2
]+ [c k+i+1

2
+d i

2
]

+[d m+k+i
2

+d k+i−1
2

], i = 0,2, · · · ,k−1,

[c m+k+i
2

+ c k+i+1
2

]+ [c m+i+1
2

+d m+k+i
2

]

+[d k+i−1
2

+d m+i−1
2

], i = k+1,k+3, · · · ,m− k−2,

[c k−m+i
2

+ c k+i+1
2

]+ [c m+i+1
2

+d k−m+i
2

]

+[d k+i−1
2

+d m+i−1
2

], i = m−k,m−k+2, · · · ,m−3,

[c k−1
2
+ c m+k

2
]+ [d k−1

2
+d k+m−2

2
], i = m−1,

[c k+i
2
+ c i+1

2
]+ [c m+k+i+1

2
+d k+i

2
]

+[d i−1
2
+d m+k+i−1

2
], i = 1,3, · · · ,k−2,

[c k+i
2
+ c m+i

2
]+ [c m+k+i+1

2
+d k+i

2
]

+[d m+i
2
+d m+k+i−1

2
], i = k,k+2, · · · ,m− k−3,

[c m−1
2

+ c 2m−k−1
2

]+ [d m−1
2

+d 2m−k−1
2

], i = m−k−1,

[c k+i
2
+ c m+i

2
]+ [c k−m+i+1

2
+d k+i

2
]

+[d m+i
2
+d k−m+i−1

2
], i = m−k+1,m−k+3, · · · ,m−2.

(3.21)

After such single step of parallel XOR operation in Stage II of Part II, it is evident

from the above expression that every coefficient of S1(x) + S2(x) becomes a XOR of

at most three bits. Then, at the start of Stage III, with the addition of the explicitly

computed S3(x), every coefficient of S1(x)+ S2(x)+ S3(x) becomes a XOR of at most

four bits. Thus, it takes two TX in Stage III to do the remainder of the parallel XOR

operations for computing A(x)B(x)x−k.

39

Therefore, with reference to (3.20), the total time complexity of our multiplier is:

Delay = Length(Stage I
⋃

Stage II)+Length(Stage III)

= Delay(S3(x))+2TX

= TA +

(
1+
⌈

log2
m+ k+2

2

⌉)
TX +2TX

= TA +(2+ dlog2(m+ k+2)e)TX .

Now, let us examine the total space complexity of our multiplier. On one hand, all

the AND gates are used for computing C(x), D(x) and S3(x). With reference to (3.6) and

(3.19), the number of AND gates needed for computing A(x)B(x)x−k is:

S
⊗

= S
⊗
(C(x))+S

⊗
(D(x))+S

⊗
(S3(x))

=
m2−1

4
×2+

(m+1)2

4

=
3m3 +2m−1

4
.

On the other hand, let us consider the XOR gates. Among all the XOR gates, some

are used for computing C(x), D(x) or S3(x), and the rest are used for XORing the coef-

ficients of C(x), D(x) and S3(x) together. First, with reference to (3.6) and (3.19), the

number of XOR gates used for computing C(x), D(x) and S3(x) is:

S
⊕
(C(x))+S

⊕
(D(x))+S

⊕
(S3(x)) =

m2−4m+3
4

×2+
m2 +2m−3

4
+

k+1
2

∑
i=1

W (i)+

m−k
2

∑
i=1

W (i)

=
3m2−6m+3

4
+

k+1
2

∑
i=1

W (i)+

m−k
2

∑
i=1

W (i).

Then, let us check the number of XOR gates used for XORing up the coefficients of C(x),

D(x) and S3(x). Such “combination” happens in Stage II of Part II as well as in Stage III.

For clarity, we give the following coefficient expression of S1(x)+ S2(x)+ S3(x) based

40

on the coefficients of C(x), D(x) and S3(x):

ri + si + ti =



c i
2
+ c m+k+i

2
+ c k+i+1

2
+d i

2

+d m+k+i
2

+d k+i−1
2

+ ti, i = 0,2, · · · ,k−1,

c m+k+i
2

+ c k+i+1
2

+ c m+i+1
2

+d m+k+i
2

+d k+i−1
2

+d m+i−1
2

+ ti, i = k+1,k+3, · · · ,m− k−2,

c k−m+i
2

+ c k+i+1
2

+ c m+i+1
2

+d k−m+i
2

+d k+i−1
2

+d m+i−1
2

+ ti, i = m−k,m−k+2, · · · ,m−3,

c k−1
2
+ c m+k

2
+d k−1

2
+d k+m−2

2
+ ti, i = m−1,

c k+i
2
+ c i+1

2
+ c m+k+i+1

2
+d k+i

2

+d i−1
2
+d m+k+i−1

2
+ ti, i = 1,3, · · · ,k−2,

c k+i
2
+ c m+i

2
+ c m+k+i+1

2
+d k+i

2

+d m+i
2
+d m+k+i−1

2
+ ti, i = k,k+2, · · · ,m− k−3,

c m−1
2

+ c 2m−k−1
2

+d m−1
2

+d 2m−k−1
2

+ ti, i = m−k−1,

c k+i
2
+ c m+i

2
+ c k−m+i+1

2
+d k+i

2

+d m+i
2
+d k−m+i−1

2
+ ti, i = m−k+1,m−k+3, · · · ,m−2,

(3.22)

where it can be verified that the total number of XOR operations among the coefficients

of C(x), D(x) and S3(x) is 6m− 4. Moreover, because the above expression contains

c0 = 0 at i = 0, m− k, and dm−1 = 0 at i = m− k− 2, m− 2, we can further save

four XOR gates from the 6m− 4 XOR gates. Thus, 6m− 8 XOR gates are needed

for the combination of the coefficients of C(x), D(x) and S3(x) in order to compute

S1(x)+S2(x)+S3(x).

41

Therefore, the total number of XOR gates used for computing A(x)B(x)x−k is:

S
⊕

= S
⊕
(C(x))+S

⊕
(D(x))+S

⊕
(S3(x))+6m−8

=
3m2−6m+3

4
+

k+1
2

∑
i=1

W (i)+

m−k
2

∑
i=1

W (i)+6m−8

=
3m2 +18m−29

4
+

k+1
2

∑
i=1

W (i)+

m−k
2

∑
i=1

W (i).

In summary, the total space and time complexities of our multiplier is:

S
⊗

: 3m2+2m−1
4 ,

S
⊕

: 3m2

4 + 9m
2 +∑

k+1
2

i=1 W (i)+∑

m−k
2

i=1 W (i)− 29
4 ,

Delay : TA +(2+ dlog2(m+ k+2)e)TX .

(3.23)

By the way, it should be noted that TA +(2+ dlog2(m+ k+2)e)TX may be equal to

TA +(2+ dlog2 me)TX ,

when k is small. This means that our multiplier can be one TX faster on certain fields

than on the other fields.

For simplicity, we do not present detailed analyses for the other three cases men-

tioned at the beginning of Section 3.3. One can use the same strategy as described above

to develop the corresponding odd-m multipliers whose space and time complexities are

summarized in the first three rows of Table 3.V. The last two rows of Table 3.V are for

the even-m multipliers discussed in the next section. For further illustration, a schematic

of our multiplier based on x7 + x+1 is given in Appendix II.

3.6 The Case When m Is Even

We briefly discuss our algorithm for the remaining case when m is even. In such

case, we make some small changes to the multiplicand partition method in the PCHS

42

Table 3.V – Complexities of the new Montgomery multiplier in the other cases
Case #AND #XOR Delay

m odd, k even

3m2+2m−1
4

3m2

4 + 9m
2 +∑

k
2
i=1W (i) TA +(2+ dlog2(2m−3k−2)e)TX0 < k ≤ m−1

3
m odd, k even

+∑

m−k−1
2

i=1 W (i)− 29
4

TA +(2+ dlog2 3ke)TXm−1
3 < k ≤ m−3

2

m odd, k even 3m2+2m−1
4

3m2

4 + 9m
2 +∑

m−1
4

i=1 W (i)
TA +(1+ dlog2(3m−3)e)TX

k = m−1
2 +∑

m−1
4

i=1 W (i)− 29
4

m odd, k odd 3m2+2m−1
4

3m2

4 + 9m
2 +∑

m+1
4

i=1 W (i)
TA +(1+ dlog2(3m+3)e)TX

k = m−1
2 +∑

m+1
4

i=1 W (i)− 29
4

m even, k odd 3m2

4

3m2

4 +4m+∑

m+2
4

i=1 W (i)
TA +(2+ dlog2 me)TX

k = m
2 +∑

m−6
4

i=1 W (i)−4

m even, k odd 3m2

4

3m2

4 +4m+∑

k+1
2

i=1 W (i)
TA +(2+ dlog2 me)TX

k < m
2 +∑

m−k−3
2

i=1 W (i)−4

algorithm[21]. We split A(x), B(x) into two parts as follows:

A(x) = A2
1(x)+ xA2

2(x), B(x) = B2
1(x)+ xB2

2(x),

where
A1(x) := ∑

m
2−1
i=0 a2ixi, A2(x) := ∑

m
2−1
i=0 a2i+1xi,

B1(x) := ∑

m
2−1
i=1 b2ixi, B2(x) := ∑

m
2−1
i=0 b2i+1xi.

Suppose the Montgomery factor is x−u, the Montgomery multiplication formula can

be written as:

A(x)B(x)x−u =
[
(A2

1(x)+ xA2
2(x))(B

2
1(x)+ xB2

2(x))
]

x−u

=
[
(A2

1(x)+ xA2
2(x))(x

−1B2
1(x)+B2

2(x))
]

x−u+1

= [x−1(A1(x)B1(x))2 + x(A2(x)B2(x))2

+(A1(x)B2(x))2 +(A2(x)B1(x))2]x−u+1

= (A1(x)B1(x))2x−u+1(1+x−1)+(A2(x)B2(x))2x−u+1(1+ x)

+((A1(x)+A2(x))(B1(x)+B2(x)))2x−u+1.

(3.24)

43

The above expression is nearly the same as 3.2 in Section 3.1. In order to use Wu’s

Montgomery squaring formula, we let u = k+1.

We now define the following symbols and equations like we did in (3.4):

C(x) = A1(x)B1(x) =
m−2

∑
i=0

cixi, D(x) = A2(x)B2(x) =
m−2

∑
i=0

dixi,

Z(x) = (C(x))2x−k =
m−1

∑
i=0

zixi, Z′(x) = (D(x))2x−k =
m−1

∑
i=0

z′ix
i,

S1(x) = Z(x)(1+ x−1) =
m−1

∑
i=0

rixi, S2(x) = Z′(x)(1+ x) =
m−1

∑
i=0

sixi;

U(x) = A1(x)+A2(x) =

m−2
2

∑
i=0

uixi, V (x) = B1(x)+B2(x) =

m−2
2

∑
i=0

vixi,

E(x) =U(x)V (x) =
m−2

∑
i=0

eixi, S3(x) = (E(x))2x−k =
m−1

∑
i=0

tixi.

The coefficients of C(x) and D(x) are given by

ci =

∑
i
j=0 a2 jb2(i− j), 0≤ i≤ m

2 −1,

∑

m
2−1
j=i−m

2 +1 a2 jb2(i− j),
m
2 ≤ i≤ m−2.

(3.25)

and

di =

∑
i
j=0 a2 j+1b2(i− j)+1, 0≤ i≤ m

2 −1,

∑

m
2−1
j=i−m

2 +1 a2 j+1b2(i− j)+1,
m
2 ≤ i≤ m−2,

(3.26)

where cm−1 = 0 and dm−1 = 0. Now consider the expression of S1(x)+S2(x). It should

be noted that when m is even, k has to be odd to make f (x) = xm + xk +1 irreducible in

F2[x]. Therefore, we only discuss two cases with respect to k:

44

Case 1: m is even and k is odd, m > 2k. We give the coefficient expressions of S1(x)

and S2(x) in (3.27) and (3.28), respectively, followed by the coefficient expression of

S1(x)+S2(x) in (3.29):

ri =



c i
2
+ c m+k+i+1

2
+ c k+i+1

2
, i = 0,2, · · · ,k−3,

c0 + c k−1
2
+ c m+2k

2
+ ck, i = k−1,

c m+i
2
+ c k+i+1

2
+ c m+k+i+1

2
, i = k+1,k+3, · · · ,m− k−3,

c m+i
2
+ c k+i+1

2
+ c k−m+i+1

2
, i = m− k−1,m− k+1, · · · ,m−2,

c k−1
2
+ c m+k−1

2
+ c0, i = m−1,

c k+i
2
+ c m+k+i

2
+ c i+1

2
, i = 1,3, · · · ,k−2,

c k+i
2
+ c m+k+i

2
+ c m+i+1

2
, i = k,k+2, · · · ,m− k−2,

c k+i
2
+ c k−m+i

2
+ c m+i+1

2
, i = m−k,m−k+2, · · · ,m−3,

(3.27)

si =



d i
2
+d m+k+i−1

2
+d k+i−1

2
, i = 0,2, · · · ,k−1,

d m+i
2
+d k+i−1

2
+d m+k+i−1

2
, i = k+1,k+3, · · · ,m− k−1,

d m+i
2
+d k+i−1

2
+d k−m+i−1

2
, i = m− k+1,m− k+3, · · · ,m−2,

d k+i
2
+d m+k+i

2
+d i−1

2
, i = 1,3, · · · ,k−2,

d k+i
2
+d m+k+i

2
+d m+i−1

2
, i = k,k+2, · · · ,m− k−2,

d k+i
2
+d k−m+i

2
+d m+i−1

2
, i = m−k,m−k+2, · · · ,m−1,

(3.28)

45

ri + si =



c i
2
+ c m+k+i+1

2
+ c k+i+1

2
+d i

2

+d m+k+i−1
2

+d k+i−1
2

, i = 0,2, · · · ,k−3,

c0 + c k−1
2
+ c m+2k

2
+ ck +d k−1

2

+d m+2k−2
2

+dk−1, i = k−1,

c m+i
2
+ c k+i+1

2
+ c m+k+i+1

2

+d m+i
2
+d k+i−1

2
+d m+k+i−1

2
, i = k+1,k+3, · · · ,m− k−3,

cm− k+1
2
+ c m

2
+ c0 +dm− k+1

2
+d m

2−1, i = m− k−1,

c m+i
2
+ c k+i+1

2
+ c k−m+i+1

2

+d m+i
2
+d k+i−1

2
+d k−m+i−1

2
, i = m− k+1,m− k+3, · · · ,m−2,

c k+i
2
+ c m+k+i

2
+ c i+1

2

+d k+i
2
+d m+k+i

2
+d i−1

2
, i = 1,3, · · · ,k−2,

c k+i
2
+ c m+k+i

2
+ c m+k+i+1

2

+d k+i
2
+d m+k+i

2
+d m+i−1

2
, i = k,k+2, · · · ,m− k−2,

c m−1
2

+ c 2m−i+1
2

+d m−1
2

+d 2m−k−1
2

, i = m− k−1,

c k+i
2
+ c m+i

2
+ c k−m+i+1

2

+d k+i
2
+d k−m+i

2
+d m+i−1

2
, i = m− k,m− k+2, · · · ,m−3,

c k−1
2
+ c m+k−1

2
+ c0 +d m+k−1

2
+d k−1

2
, i = m−1.

(3.29)

46

Case 2: m is even and k is odd, m = 2k. Here, we only give the coefficient expression

of S1(x)+S2(x):

ri + si =



c i
2
+ c m+2i+2

4
+ c 3m+2i+2

4
+d i

2

+d 3m+2i−2
4

+d m+2i−2
4

, i = 0,2, · · · , m
2 −3,

c m
2
+ c m−2

4
+d m

2−1 +d m−2
4
, i = m

2 −1,

c m+i
2
+ c m+2i+2

4
+ c 2i−m+2

4

+d m+i
2
+d m+2i−2

4
+d 2i−m−2

4
, i = m

2 +1, m
2 +3, · · · ,m−2,

c m
2
+ c 3m+2

4
+ c0 +d m

2

+d0 +d 3m−2
4

, i = m
2 ,

c m+2i
4

+ c 3m+2i
4

+ c i+1
2

+d m+2i
4

+d 2i−m
4

+d m+i−1
2

, i = 1,3, · · · , m
2 −2,

c m+2i
4

+ c 2i−m
4

+ c m+i+1
2

+d m+2i
4

+d 2i−m
4

+d m+i−1
2

, i = m
2 +2, m

2 +4, · · · ,m−3,

c m−2
4

+ c 3m−2
4

+d m
2
+d m−2

4
, i = m−1.

(3.30)

In the meantime, we compute S3(x) with the previously described bit-reusing trick.

As the degrees of A1(x), A2(x), B1(x) and B2(x) are at most m
2 − 1, it follows that 0 ≤

degU(x), degV (x)≤ m
2 −1. In Case 1, the coefficient expressions of E(x) and S3(x) are

ei =

∑
i
j=0 u jvi− j, 0≤ i≤ m

2 −1,

∑

m
2−1
j=i−m

2 +1 u jvi− j,
m
2 ≤ i≤ m−2,

(3.31)

and

ti =



e i
2
, i = 0,2, · · · ,k−1,

e m+i
2
, i = k+1,k+3, · · · ,m−2,

e k+i
2
+ e m+k+i

2
, i = 1,3, · · · ,m− k−2,

e k+i
2
+ e k−m+i

2
, i = m− k,m− k+2, · · · ,m−1,

(3.32)

47

respectively. The computation of S3(x) is based on the same idea as that in the odd-m

case. The computation sequence in Case 1 is shown in Table 3.VI:

Table 3.VI – The computation sequence in the case when m is even and m > 2k
Parts� Stages I II III

I U = A1 +A2, V = B1 +B2︸ ︷︷ ︸
Delay: 1TX

S3 = (UV)2x−k,{c0xk−1} inserted︸ ︷︷ ︸
TA+dlog2

m
2 eTX

[S1 +S2]+S3︸ ︷︷ ︸
2TX

II C = A1B1,D = A2B2︸ ︷︷ ︸
Delay: TA+dlog2

m
2 eTX

[S1 +S2],{c0xk−1} removed︸ ︷︷ ︸
1TX

In addition, we need to mention a few points about the time complexity of our algo-

rithm in Case 1 when m is even and m > 2k:

1. The computation of both C(x) and D(x) requires a delay of TA + dlog2
m
2 eTX .

2. By substituting (3.31) into (3.32), each ti becomes a XOR of at most m
2 terms in

{uiv j | 0 ≤ i, j ≤ m
2 −1}. Since it takes TX +TA to compute all the uiv j terms in

advance, the delay for computing S3(x) is at most TA +TX + dlog2
m
2 eTX .

3. In the coefficient expression of S1(x), i.e. (3.27), we notice that rk−1 is a XOR of

four bits. Hence, rk−1 + sk−1 becomes a XOR of four bits at the end of Stage II,

which leads to a delay of 3TX for computing S1(x)+S2(x)+S3(x) in Stage III. To

make Stage III shorter, we need to delete c0 from the expression of rk−1 and insert

c0 into the expression of tk−1. Since tk−1 is a XOR of k+1
2 bits at the beginning of

Stage II of Part I, tk−1 becomes a XOR of k+3
2 bits after it incorporates c0 = a0b0

as an extra addend. Because m > 6 in practice and m > 2k, it will take no more

than TA + dlog2
m
2 eTX to compute the modified expression of tk−1 in Stage II of

Part I. In this way, we keep the length of Stage III within a delay of 2TX while

leaving the delay for computing S3(x) unaffected.

The space and time complexities of our multiplier on even-m GF(2m) are summa-

rized in Table 3.V in the last two rows.

48

CHAPTER 4

COMPARISON AND DISCUSSION

In the previous chapter, we have expressed the space complexities of the new multi-

plier with sums of Hamming weight. In order to facilitate the comparison between our

algorithm and the others in terms of space complexity, we need to simplify the Hamming

weight sum expression.

First, we compute the upper bound of ∑
N
i=1W (i), ∀N ∈ Z+. Since the binary length

of N is blog2 Nc+1, all the positive integers smaller than N have a binary length equal

to or smaller than blog2 Nc+ 1. Suppose M = {i | 1 ≤ i ≤ N, i ∈ Z+}, G = { j | 1 ≤
L(j) ≤ blog2 Nc+ 1, j ∈ Z+} where L(j) is the length of (j)2, it follows that M ⊆ G,

hence ∑i∈M W (i)≤ ∑ j∈GW (j).

More generally, suppose G′ = { j | 1 ≤ L(j) ≤ L0, j ∈ Z+} where L0 ∈ Z+, let us

calculate ∑ j∈G′W (j). We can partition G′ into L0 non-overlapping subsets, i.e. G′ =⋃L0
k=1 G′k and

⋂L0
k=1 G′k = /0, such that

G′k = {n | 1≤ L(n)≤ L0, W (n) = k}.

There is a bijection between G′k and the set of L0-bit-long binary strings that have k bits

equal to “1” and the other L0− k bits equal to “0”. Hence
∣∣G′k∣∣= (L0

k

)
.

49

Then, we have the following transformation:

∑
j∈G′

W (j) =
L0

∑
k=1

∑
n∈G′k

W (n)

=
L0

∑
k=1

∑
n∈G′k

k

=
L0

∑
k=1

(
L0

k

)
k

=

(
d
dx

(
L0

∑
k=1

(
L0

k

)
xk

))∣∣∣∣∣
x=1

=

(
d
dx

(
L0

∑
k=1

(
L0

k

)
xk ·1L0−k

))∣∣∣∣∣
x=1

,

which can be further transformed by using the binomial theorem

L0

∑
k=0

(
L0

k

)
akbL0−k = (a+b)L0

as (
d
dx

(
L0

∑
k=1

(
L0

k

)
xk ·1L0−k

))∣∣∣∣∣
x=1

=

(
d
dx

(
(x+1)L0−1

))∣∣∣∣
x=1

= L0(x+1)L0−1|x=1

= L02L0−1.

Thus, ∑ j∈G′W (j) = L02L0−1. By replacing L0 with b1+ log2 Nc, we get

N

∑
i=1

W (i)≤ ∑
j∈G

W (j) = b1+ log2 Nc2blog2 Nc,

which is a tight upper bound for ∑
N
i=1W (i). For simplicity, we may use the following

upper bound:
N

∑
i=1

W (i)≤ N +N log2 N.

50

Here, k+1≤ m−1
2 and m− k ≤ m−1, so the Hamming weight sum in (3.18) is:

k+1
2

∑
i=1

W (i)+

m−k
2

∑
i=1

W (i)≤ k+1
2

(1+ log2
k+1

2
)+

m− k
2

(1+ log2
m− k

2
)

<
m−1

4
(1+ log2

m−1
4

)+
m−1

2
(1+ log2

m−1
2

)

=
3m−3

4
log2(m−1)− m−1

4
.

Thus, the total space complexity in (3.23) is less than 3m2+17m−28
4 + 3m−3

4 log2(m− 1).

By the same process, we were able to simplify the space complexity expressions in

Table 3.V.

The efficiency of our new algorithm in terms of speed was analysed in the previous

chapter. As we have seen, given a Galois field generated by a trinomial f (x) = xm +

xk +1, according to Table 3.V, when m is odd and k ≤ m−1
2 , the time complexity of our

multiplier is:

Delay≤ TA +(3+ dlog2 me)TX ,

and when m is even and k ≤ m
2 , the time complexity of our multiplier is:

Delay = TA +(2+ dlog2 me)TX .

Actually, for certain values of odd m and k, the time complexity of our multiplier can

be even smaller than TA +(3+ dlog2 me)TX . We have inspected all the 786 irreducible

trinomials with odd degrees between 101 and 1203 inclusively. Among these trinomials,

we found that about 56% of them can generate the Galois fields where our multiplier

runs with a time complexity of TA +(2+ dlog2 me)TX .

In Table 4.I, we provide a comparison in space and time complexities between our

algorithm and several other bit-parallel GF(2m) multiplication algorithms. The compar-

isons are split in three cases for the trinomial xm + xk + 1: when k = 1, when k = m
2

and m is even, and when 1 < k < m
2 . Notice that the first two cases may have a time

complexity one TX lower than that in the general case 1 < k < m
2 and k is odd. Com-

51

pared with the fastest multipliers [7] [20], our algorithm saves about 25% logic gates

by choosing k appropriately, while being only at most 2TX slower in speed. Moreover,

compared with Elia’s Karatsuba-based multiplier [23], our algorithm maintains a nearly

equal space complexity while having the same or less time complexity.

Let us use examples to illustrate the merit of the new multiplier. Among the five

irreducible polynomials recommended for the elliptic curve digital signature algorithm

(ECDSA) by the National Institute of Standards and Technology (NIST) [26], two trino-

mials,

p1(x) = x233 + x74 +1 and p2(x) = x409 + x87 +1,

generate the fields on which the new algorithm has the same time complexity as that of

the Mastrovito multipliers in [11] [12] [13] or that of the Montgomery multiplier in [19],

but requires less space complexity.

To facilitate description, in Table 4.II, we only compare our multiplier with three

typical multipliers presented in [20], [23] and [22], respectively. Compared with the

fastest algorithm by Hariri et al. [20], our algorithm is one TX slower, while saving about

24.8% AND gates plus 22.5% XOR gates over p1(x), and 24.9% AND gates plus 23.5%

XOR gates over p2(x). Compared with the bit-parallel Karatsuba variant proposed by

Cho et al. [22], our algorithm has the same speed but saves 16.4% AND gates plus

13.9% XOR gates over p1(x), and 21.3% AND gates plus 19.9% XOR gates over p2(x).

Compared with the algorithm of Elia [23] which uses the fewest gates, our algorithm

requires the same number of AND gates plus a little more XOR gates (about 0.9% over

p1(x) and 0.6% over p2(x)), but is one TX faster. We illustrate the above algorithms with

the delay-by-gate-number graphs in Figure 4.1 and Figure 4.2, respectively.

In Figure 4.1 and Figure 4.2, it can be observed that while the total gate number

increases, the corresponding circuit delay draws near to the red dotted line representing

the lowest possible delay. Remember the so-called “space-time trade-off” presented in

the title of this thesis. For a GF(2m) generated by xm + xk + 1, we may use more gates

for constructing faster multipliers. Nevertheless, we cannot reduce the general delay of

52

Table 4.I – Comparison of several bit-parallel multipliers based on irreducible trinomials
Multiplier # AND # XOR Delay

xm + x+1

[11][12][13] m2 m2−1 TA +(1+ dlog2 me)TX

Wu[19] m2 m2−1 TA +(2+ dlog2(m−2)e)TX

[7][20][25] m2 m2−1 TA + dlog2(2m−1)eTX

Cho[22] m2−1 m2−1 TA +(2+ dlog2(m−4)e)TX

Proposed
3m2+2m−1

4 < 3m2+18m−25
4 + m−1

2 log2(m−1) (m odd) ≤ TA +(2+ dlog2(m+3)e)TX

3m2

4 < 3m2+16m−12
4 + m−4

2 log2(m−4) (m even) TA +(2+ dlog2 me)TX

xm + xk +1 (1 < k < m
2)

[11][12][13][19] m2 m2−1 TA +(2+ dlog2 me)TX

Petra[25] m2 m2−1 TA +(dlog2(2m+2k−3)e)TX

Fan [7]Hariri[20] m2 m2−1 TA + dlog2(2m− k−1)eTX

Elia [23]
3m2+2m−1

4
3m2

4 +4m+ k− 23
4 (m odd)

TA +(3+ dlog2(m−1)e)TX
3m2

4
3m2

4 + 5m
2 + k−4 (m even)

Li[24] m2

2 +(m− k)2 m2

2 +(m− k)2 +2k TA +(2+ dlog2(m−1)e)TX

Cho[22] m2− k2

m2 + k− k2−1(1 < k < m
3)

≤ TA +(2+ dlog2 me)TXm2 +4k− k2−m−1(m
3 ≤ k < m−1

2)

m2 +2k− k2(k = m−1
2)

Proposed
3m2+2m−1

4 < 3m2+17m−30
4 + 3m−5

4 log2(m+1) (m odd) ≤ TA +(3+ dlog2 me)TX

3m2

4 < 3m2+14m−10
4 + 3m−10

4 log2 m (m even) TA +(2+ dlog2 me)TX

xm + x
m
2 +1

[11][12][13][19] m2 m2− m
2 TA +(1+ dlog2(m−1)e)TX

[7][20][25] m2 m2− m
2 TA + dlog2

3m
2 eTX

Shen [34] 3m2

4
3m2

4 +m+1 TA +(1+ dlog2(m−1)e)TX

Shou [35] 3m2

4
3m2

4 +m+1 TA +(3+ dlog2(m−1)e)TX

Cho[22] 3m2

4
3m2

4 +m+1 TA +(1+ dlog2(m−2)e)TX

Proposed 3m2

4 < 3m2+14m−12
4 + m−2

2 log2(m+2) TA +(2+ dlog2 me)TX

53

Table 4.II – Complexities of several bit-parallel multipliers on the two Galois fields rec-
ommended by the National Institute of Standards and Technology

AND # XOR Delay

x233 + x74 +1

Fan[7]Hariri[20] 54289 54288 TA +9TX

Elia[23] 40833 41717 TA +11TX

Cho[22] 48813 48886 TA +10TX

This thesis 40833 42091 TA +10TX

x409 + x87 +1

Fan[7]Hariri[20] 167281 167280 TA +10TX

Elia[23] 125665 127178 TA +12TX

Cho[22] 159712 159798 TA +11TX

This thesis 125665 127974 TA +11TX

GF(2m) multiplication to lower than TA+dlog2 meTX . Thus, there should be an optimum

number of gates, say OGm,k, that is used to construct a multiplier with a short delay, say

ODm,k. When designing a multiplication circuit, a reasonable increase in gate number

can help bring a delay of ODm,k +TX down to a delay of ODm,k, but it might be a much

larger increase in gate number that can remove another TX from the delay of ODm,k. On

the aforementioned two fields recommended by NIST, it is likely that our algorithm is

closer to the optimum in gate number than the others.

Figure 4.1 – A comparison over p1(x) Figure 4.2 – A comparison over p2(x)

54

Such good property with respect to the space-time trade-off enables our multiplier to

satisfy spatial constraints inherent to small electronic devices (such as smart card, RFID

tags etc.) while maintaining a time complexity very close to the best multipliers.

55

CHAPTER 5

CONCLUSIONS

5.1 Summaries and Conclusions

This thesis proposes a new bit-parallel Montgomery multiplication algorithm based

on trinomials. This algorithm has been developed from the PCHS algorithm and Wu’s

Montgomery squaring formulae. The proposed new algorithm has a significantly lower

space complexity than most of the previous algorithms while maintaining a low time

complexity. Our work is especially interesting for the implementation of ECDSA on

space-constrained devices. An integrated analysis of both space complexities and time

complexities over the two trinomial-based Galois fields recommended by NIST shows

that our algorithm reaches a better balance between the space complexity and the time

complexity than the other typical algorithms.

5.2 Future Research

We are working on improving our multiplier over some special Galois fields. We are

using the shifted polynomial basis to further reduce our multiplier’s time complexity at

the cost of a slight increase in its space complexity. Moreover, some circuit simulations

will be done for the high-degree trinomials recommended by NIST. Such simulation

should be carried out with the support of a professional software (e.g. Proteus). It is

our hope that this new algorithm may be implemented on a real chip in the near future.

Finally, we intend to develop an algorithm for the pentanomial-generated Galois fields

by modifying the current trinomial-based algorithm.

56

BIBLIOGRAPHY

[1] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone and T. Yaghoobian.

Applications of Finite Fields. Kluwer Academic Publishers, Norwell, Mas-

sachusetts, USA, 1993.

[2] I. Blake, G. Seroussi and N. Smart. Elliptic curves in cryptography. London Mathe-

matical Society Lecture Note Series, 265, Cambridge University Press, 1999.

[3] I. N. Herstein. Topics in Algebra, 2nd Edition. John Wiley & Sons, USA, 1975.

[4] M. Morales-Sandoval, C. Feregrino-Uribe and P. Kitsos. Bit-serial and digit-serial

GF(2m) Montgomery multipliers using linear feedback shift registers. Computers &

Digital Techniques, IET, 5(2):86-94, 2011.

[5] J. von zur Gathen and J. Shokrollahi. Efficient FPGA-based Karatsuba multipliers

for polynomials over F2. Selected Areas in Cryptography, Lecture Notes in Com-

puter Science, 3897:359-369, 2006.

[6] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, New York,

NY, USA, 1996.

[7] H. Fan, M.A. Hasan. Fast bit parallel-shifted polynomial basis multipliers in

GF(2n). IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, 53(12):2606-2615, 2006.

[8] H. Fan, Y. Dai. Fast bit-parallel GF(2n) multiplier for all trinomials. IEEE Transac-

tions on Computers, 54(4):485-490, 2005.

[9] H. Wu. Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis.

IEEE Transactions on Computers, 51(7):750-758, 2002.

[10] A. Cilardo. Fast parallel GF(2m) polynomial multiplication for all degrees. IEEE

Transactions on Computers, 62(5):929-943, 2013.

57

[11] B. Sunar, Ç.K. Koç. Mastrovito multiplier for all trinomials. IEEE Transactions on

Computers, 48(5):522-527, 1999.

[12] A. Halbutogullari, Ç.K. Koç. Mastrovito multiplier for general irreducible polyno-

mials. IEEE Transactions on Computers, 49(5):503-518, 2000.

[13] T. Zhang, K.K. Parhi. Systematic design of original and modified mastrovito

multipliers for general irreducible polynomials. IEEE Transactions on Computers,

50(7):734-749, 2001.

[14] P. L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44(170):519-521, 1985.

[15] Ç. K. Koç and T. Acar. Montgomery multiplication in GF(2k). Designs, Codes and

Cryptography, 14(1):57-69, 1998.

[16] J.C. Bajard, L. Imbert, and C. Negre. Arithmetic operations in finite fields of

medium prime characteristic using the Lagrange representation. IEEE Transactions

on Computers, 55(9):1167-1177, 2006.

[17] C. Chiou, C. Lee, A. Deng, and J. Lin. Concurrent error detection in Montgomery

multiplication over GF(2m). IEICE Transactions Fundamentals of Electronics Com-

munications and Computer Sciences, 89(2):566-574, 2006.

[18] M. Morales-Sandoval, C. Feregrino-Uribe, P. Kitsos, and R. Cumplido.

Area/performance trade-off analysis of an FPGA digit-serial GF(2m) Montgomery

multiplier based on LFSR. Computer Electrical Engineering Journal, 39(2):542-

549, 2013.

[19] H. Wu. Montgomery multiplier and squarer for a class of finite fields. IEEE Trans-

actions on Computers, 51(5):521-529, 2002.

[20] A. Hariri and A. Reyhani-Masoleh. Bit-serial and bit-parallel Montgomery mul-

tiplication and squaring over GF(2m). IEEE Trans. Computers, 58(10):1332-1345,

2009.

58

[21] S. Park, K, Chang, D. Hong, and C. Seo. New efficient bit-parallel polynomial

basis multiplier for special pentanomials. Integration, the VLSI Journal, 47(1):130-

139, 2014.

[22] Y. Cho, N. Chang, C. Kim, Y. Park, and S. Hong. New bit parallel multiplier with

low space complexity for all irreducible trinomials over GF(2n). IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 20(10):1903-1908, 2012.

[23] M. Elia, M. Leone, and C. Visentin. Low complexity bit-parallel multipliers for

GF(2m) with generator polynomial xm + xk + 1. Electronic Letters, 35(7):551-552,

1999.

[24] Y. Li, G. Chen, and J. Li. Speed-up of bit-parallel Karatsuba multiplier in GF(2m)

generated by trinomials, Information Processing Letters, 111(8):390-394, 2011.

[25] N. Petra, D. De Caro, and A.G.M. Strollo. A novel architecture for Galois fields

GF(2m) multipliers based on mastrovito scheme. IEEE Transactions on Computers,

56(11):1470-1483, 2007.

[26] Recommended Elliptic Curves for Federal Government Use, http://csrc.

nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf,

July, 1999.

[27] A. Reyhani-Masoleh and M.A. Hasan. A New Construction of Massey-Omura Par-

allel Multiplier over GF(2m). IEEE Transactions on Computers, 51(5):511-520,

2001.

[28] R.C. Mullin, I.M. Onyszchuk, S.A, Vanstone, and R.M. Wilson. Optimal normal

basis in GF(pn). Discrete Applied Mathematics, 22(2):149-161, 1988/1989.

[29] I.S. Hsu, T.K. Truong, H.M. Shao, and L.J. Deutsch. A comparison of VLSI archi-

tecture of finite field multipliers using dual, normal or standard basis. IEEE Trans-

actions on Computers, 37(6):735-739, 1988.

59

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf,
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf,

[30] S.T.J. Fenn, M. Benaissa and D. Taylor. GF(2m) multiplication and division over

the dual basis. IEEE Transactions on Computers, 45(3):319-327, 1996.

[31] Y. Li, G. Chen, and X. Xie. Low complexity bit-parallel GF(2m) multiplier for

all-one polynomials. eprint.iacr.org, 2012.

[32] F. Rodiguez-Henriquez and Ç.K. Koç. Parallel multipliers based on special irre-

ducible pentanomials. IEEE Transactions on Computers, 52(11), 2003.

[33] H. Fan and M.A. Hasan. A new approach to sub-quadratic space complexity

parallel multipliers for extended binary fields. IEEE Transactions on Computers,

56(2):224-233, 2007.

[34] H. Shen and Y. Jin. 2008, Low complexity bit parallel multiplier for GF(2m) gener-

ated by equally-spaced trinomials. Information Processing Letters, 107(6):211-215,

2008.

[35] G. Shou, Z. Mao, Y. Hu, Z. Guo and Z. Qian. Low complexity architecture of bit

parallel multipliers for GF(2m). Electronics Letters, 46(19):1326-1327, 2010.

60

APPENDIX I

The Expressions of S1(x)+S2(x) in Case 2, Case 3 and Case 4 When m Is Odd

Case 2: When both m and k are odd, k = m−1
2 , we have:

ri + si =



c i
2
+ c 3m+2i−1

4
+ c m+2i+1

4
+d i

2

+d 3m+2i−1
4

+d m+2i−3
4

, i = 0,2, · · · , m−3
2 ,

c 2i−m−1
4

+ c m+2i+1
4

+ c m+i+1
2

+d 2i−m−1
4

+d m+2i−3
4

+d m+i−1
2

, i = m+1
2 , m+3

2 , · · · ,m−3,

c m−3
4

+ c 3m−1
4

+d m−3
4

+d 3m−5
4

, i = m−1,

c m+2i−1
4

+ c i+1
2
+ c 3m+2i+1

4

+d m+2i−1
4

+d i−1
2
+d 3m+2i−3

4
, i = 1,3, · · · , m−5

2 ,

c m−1
2

+ c 3m−1
4

+d m−1
2

+d 3m−1
4

, i = m−1
2 ,

c m+2i−1
4

+ c m+i
2
+ c 2i−m+1

4

+d m+2i−1
4

+d m+i
2
+d 2i−m−3

4
, i = m+3

2 , m+7
2 , · · · ,m−2.

The discussions about Case 1 and Case 2 provide the coefficient expressions of

S1(x) + S2(x) when k is odd. The results for the cases when k is even are presented

as follows:

61

Case 3: When m is odd and k is even, 0 < k ≤ m−3
2 , we have:

ri + si =



c i
2
+ c k+i

2
+ c m+k+i+1

2

+d i
2
+d k+i

2
+d m+k+i−1

2
, i = 0,2, · · · ,k−2,

c k+i
2
+ c m+k+i+1

2
+ c m+i+1

2

+d k+i
2
+d m+k+i−1

2
+d m+i−1

2
, i = k,k+2, · · · ,m− k−3,

c m−1
2

+ cm− k
2
+d m−1

2
+dm− k

2−1, i = m− k−1,

c k+i
2
+ c k−m+i+1

2
+ c m+i+1

2

+d k+i
2
+d k−m+i−1

2
+d m+i−1

2
, i = m−k+1,m−k+3, · · · ,m−3,

c m+k+i
2

+ c i+1
2
+ c k+i+1

2

+d m+k+i
2

+d i−1
2
+d k+i−1

2
, i = 1,3, · · · ,k−1,

c m+k+i
2

+ c m+i
2
+ c k+i+1

2

+d m+k+i
2

+d m+i
2
+d k+i−1

2
, i = k+1,k+3, · · · ,m− k−2,

c k−m+i
2

+ c m+i
2
+ c k+i+1

2

+d k−m+i
2

+d m+i
2
+d k+i−1

2
, i = m− k,m−k+2, · · · ,m−2,

c m+k−1
2

+ c k
2
+d m+k+1

2
+d k

2−1, i = m−1.

62

Case 4: When m is odd and k is even, k = m−1
2 , we have:

ri + si =



c i
2
+ c m+2i−1

4
+ c 3m+2i+1

4

+d i
2
+d m+2i−1

4
+d 3m+2i−3

4
, i = 0,2, · · · , m−5

2 ,

c m−1
2

+ c 3m+1
4

+d m−1
2

+d 3m−3
4

, i = m−1
2 ,

c m+2i−1
4

+ c 2i−m+1
4

+ c m+i+1
2

+d m+2i−1
4

+d 2i−m−3
4

+d m+i−1
2

, i = m+3
2 , m+7

2 , · · · ,m−3,

c 3m−3
4

+ c m−1
4

+d 3m−7
4

+d m−5
4
, i = m−1,

c 3m+2i−1
4

+ c i+1
2
+ c m+2i+1

4

+d 3m+2i−1
4

+d i−1
2
+d m+2i−3

4
, i = 1,3, · · · , m−3

2 ,

c 2i−m−1
4

+ c m+i
2
+ c m+2i+1

4

+d 2i−m−1
4

+d m+i
2
+d m+2i−3

4
, i = m+1

2 , m+5
2 , · · · ,m−2.

63

APPENDIX II

A Schematic of Our Multiplier Based On x7 +x+1, With {S_i | 0≤ i≤ 6} As the

Coefficients of Product

c1

c5

d5

t6

u1v3

u2v2

u3v1

u1v0

u0v1

u2v3

u3v2

u2v0

u1v1

u0v2

t2

t3

t4

u3v0

u2v1

u1v2

u0v3

t5

S_0 S_1 S_2 S_3 S_4 S_5 S_6

a1

b6

b4

b2

b0(v0)

a5

a3

b1

a6(u3)

a4

a2

a0

b5

b3

u0

v1

v2

v3

u2

u1

t1

t0

c2

c3

d4

d1

d2

d3

d0

c4

c6

64

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Notation
	Acknowledgments
	Introduction
	Background
	Motivation
	Contribution of the Thesis
	Outline and Organization

	Preliminaries
	Galois Field GF(2m) and Its Arithmetic
	Some Concepts in Circuit Layout and Computation
	The AND Gate and the XOR Gate
	The Space Complexity and the Time Complexity

	The Ordinary Multiplication Scheme
	The Montgomery Multiplication Scheme
	The Divide-and-Conquer Multiplication Schemes
	The Karatsuba Algorithm in F2[x]
	The PCHS Algorithm

	New field multiplication using Montgomery squaring operation
	Our Proposal
	The Complexities for Computing C(x) and D(x)
	The Representation of S1(x)+S2(x) by C(x) and D(x)
	The Computation of S3(x)
	A New Method for Computing S3(x) Using a XOR-Gate-Saving Strategy
	Summary of the Space Complexity Analysis of S3(x)
	Summary of the Time Complexity Analysis of S3(x)

	The Full Computation Sequence and the Overall Complexity Analysis
	The Case When m Is Even

	Comparison and Discussion
	Conclusions
	Summaries and Conclusions
	Future Research

	Bibliography

