909 research outputs found

    Trade liberalization and environmental tax in differentiated oligopoly with consumption externalities

    Get PDF
    This paper investigates the environment tax and trade liberalization with different market structures (pure oligopoly or mixed oligopoly) juxtaposing the substitutability of the goods (homogenous goods and differentiated goods), wherein environmental damage is associated with consumption. It shows that the environmental tax in mixed oligopoly is higher than in pure oligopoly irrespective of the properties of goods. In addition, it demonstrates that when the domestic market increases its openings, the tariff reduction does not always bring positive effects on the environment in mixed oligopoly but, in pure oligopoly with homogeneous goods, the tariff reduction is bad for the environment.

    Block of Tetrodotoxin-resistant Na+ Channel Pore by Multivalent Cations: Gating Modification and Na+ Flow Dependence

    Get PDF
    Tetrodotoxin-resistant (TTX-R) Na+ channels are much less susceptible to external TTX but more susceptible to external Cd2+ block than tetrodotoxin-sensitive (TTX-S) Na+ channels. Both TTX and Cd2+ seem to block the channel near the “DEKA” ring, which is probably part of a multi-ion single-file region adjacent to the external pore mouth and is involved in the selectivity filter of the channel. In this study we demonstrate that other multivalent transitional metal ions such as La3+, Zn2+, Ni2+, Co2+, and Mn2+ also block the TTX-R channels in dorsal root ganglion neurons. Just like Cd2+, the blocking effect has little intrinsic voltage dependence, but is profoundly influenced by Na+ flow. The apparent dissociation constants of the blocking ions are always significantly smaller in inward Na+ currents than those in outward Na+ current, signaling exit of the blocker along with the Na+ flow and a high internal energy barrier for “permeation” of these multivalent blocking ions through the pore. Most interestingly, the activation and especially the inactivation kinetics are slowed by the blocking ions. Moreover, the gating changes induced by the same concentration of a blocking ion are evidently different in different directions of Na+ current flow, but can always be correlated with the extent of pore block. Further quantitative analyses indicate that the apparent slowing of channel activation is chiefly ascribable to Na+ flow–dependent unblocking of the bound La3+ from the open Na+ channel, whereas channel inactivation cannot happen with any discernible speed in the La3+-blocked channel. Thus, the selectivity filter of Na+ channel is probably contiguous to a single-file multi-ion region at the external pore mouth, a region itself being nonselective in terms of significant binding of different multivalent cations. This region is “open” to the external solution even if the channel is “closed” (“deactivated”), but undergoes imperative conformational changes during the gating (especially the inactivation) process of the channel

    A Novel Approach for Adaptive Signal Processing

    Get PDF
    Adaptive linear predictors have been used extensively in practice in a wide variety of forms. In the main, their theoretical development is based upon the assumption of stationarity of the signals involved, particularly with respect to the second order statistics. On this basis, the well-known normal equations can be formulated. If high- order statistical stationarity is assumed, then the equivalent normal equations involve high-order signal moments. In either case, the cross moments (second or higher) are needed. This renders the adaptive prediction procedure non-blind. A novel procedure for blind adaptive prediction has been proposed and considerable implementation has been made in our contributions in the past year. The approach is based upon a suitable interpretation of blind equalization methods that satisfy the constant modulus property and offers significant deviations from the standard prediction methods. These blind adaptive algorithms are derived by formulating Lagrange equivalents from mechanisms of constrained optimization. In this report, other new update algorithms are derived from the fundamental concepts of advanced system identification to carry out the proposed blind adaptive prediction. The results of the work can be extended to a number of control-related problems, such as disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. The applications implemented are speech processing, such as coding and synthesis. Simulations are included to verify the novel modelling method

    Using Rare Earth Elements to Constrain Particulate Organic Carbon Flux in the East China Sea

    Get PDF
    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82-94% using the OC mixing model, and 30-80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal sea

    Effects of natto extract on endothelial injury in a rat model

    Get PDF
    Vascular endothelial damage has been found to be associated with thrombus formation, which is considered to be a risk factor for cardiovascular disease. A diet of natto leads to a low prevalence of cardiovascular disease. The aim of the present study was to investigate the effects of natto extract on vascular endothelia damage with exposure to laser irradiation. Endothelial damage both in vitro and in vivo was induced by irradiation of rose bengal using a DPSS green laser. Cell viability was determined by MTS assay, and the intimal thickening was verified by a histological approach. The antioxidant content of natto extract was determined for the free radical scavenging activity. Endothelial cells were injured in the presence of rose bengal irradiated in a dose-dependent manner. Natto extract exhibits high levels of antioxidant activity compared with purified natto kinase. Apoptosis of laser-injured endothelial cells was significantly reduced in the presence of natto extract. Both the natto extract and natto kinase suppressed intimal thickening in rats with endothelial injury. The present findings suggest that natto extract suppresses vessel thickening as a synergic effect attributed to its antioxidant and anti-apoptosis properties

    Reliable Data Transmission through Private CBRS Networks

    Full text link
    We consider the use of a domain proxy assisted private citizen broadband radio service (CBRS) network and propose a Maximum Transmission Continuity (MTC) scheme to transmit Internet of Things (IoT) data reliably. MTC dynamically allocates available CBRS channels to sustain the continuity of data transmission without violating the channel access requirements. MTC allocates the granted CBRS channels according to the priority of each user, the instant channel access status, interference among users, and the fairness. The simulation results demonstrate the improvement in managing reliable IoT data transmission in the private CBRS network.Comment: 5 pages, 5 figure

    A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan

    Full text link
    Taiwan is located at an active plate boundary and prone to earthquake hazards. To evaluate the island’s seismic risk, the Taiwan Earthquake Model (TEM) project, supported by the Ministry of Sciences and Technology, evaluates earthquake hazard, risk, and related social and economic impact models for Taiwan through multidisciplinary collaboration. One of the major tasks of TEM is to construct a complete and updated seismogenic structure database for Taiwan to assess future seismic hazards. Toward this end, we have combined information from pre-existing databases and data obtained from new analyses to build an updated and digitized three-dimensional seismogenic structure map for Taiwan. Thirty-eight on-land active seismogenic structures are identified. For detailed information of individual structures such as their long-term slip rates and potential recurrence intervals, we collected data from existing publications, as well as calculated from results of our own field surveys and investigations. We hope this updated database would become a significant constraint for seismic hazard assessment calculations in Taiwan, and would provide important information for engineers and hazard mitigation agencies

    Seismic behavior of pile in liquefiable soil ground by centrifuge shaking table tests

    Get PDF
    Dramatic failure of pile foundations caused by the soil liquefaction was founded and leading to many studies on the seismic behavior of pile. The failures were often accompanied with settlement, lateral displacement and tilting of superstructures. Therefore soil-structure interaction effects must be properly considered in the design of pile. Two centrifuge models were conducted by shaking table at an acceleration field of 80 g. The purpose of this study was to investigate the seismic response of piles attached with different tip mass and embedded in liquefied or non-liquefied deposits. From the results, it was found that the maximum bending moment of pile occurs at the depth of 4 m and 5 m for dry sand and saturated sand models, respectively. The more tip mass leads to the more permanent lateral displacement and the more residual bending moment

    Protein kinase A-dependent Neuronal Nitric Oxide Synthase Activation Mediates the Enhancement of Baroreflex Response by Adrenomedullin in the Nucleus Tractus Solitarii of Rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adrenomedullin (ADM) exerts its biological functions through the receptor-mediated enzymatic mechanisms that involve protein kinase A (PKA), or neuronal nitric oxide synthase (nNOS). We previously demonstrated that the receptor-mediated cAMP/PKA pathway involves in ADM-enhanced baroreceptor reflex (BRR) response. It remains unclear whether ADM may enhance BRR response via activation of nNOS-dependent mechanism in the nucleus tractus solitarii (NTS).</p> <p>Methods</p> <p>Intravenous injection of phenylephrine was administered to evoke the BRR before and at 10, 30, and 60 min after microinjection of the test agents into NTS of Sprague-Dawley rats. Western blotting analysis was used to measure the level and phosphorylation of proteins that involved in BRR-enhancing effects of ADM (0.2 pmol) in NTS. The colocalization of PKA and nNOS was examined by immunohistochemical staining and observed with a laser confocal microscope.</p> <p>Results</p> <p>We found that ADM-induced enhancement of BRR response was blunted by microinjection of NPLA or Rp-8-Br-cGMP, a selective inhibitor of nNOS or protein kinase G (PKG) respectively, into NTS. Western blot analysis further revealed that ADM induced an increase in the protein level of PKG-I which could be attenuated by co-microinjection with the ADM receptor antagonist ADM<sub>22-52 </sub>or NPLA. Moreover, we observed an increase in phosphorylation at Ser1416 of nNOS at 10, 30, and 60 min after intra-NTS administration of ADM. As such, nNOS/PKG signaling may also account for the enhancing effect of ADM on BRR response. Interestingly, biochemical evidence further showed that ADM-induced increase of nNOS phosphorylation was prevented by co-microinjection with Rp-8-Br-cAMP, a PKA inhibitor. The possibility of PKA-dependent nNOS activation was substantiated by immunohistochemical demonstration of co-localization of PKA and nNOS in putative NTS neurons.</p> <p>Conclusions</p> <p>The novel finding of this study is that the signal transduction cascade that underlies the enhancement of BRR response by ADM in NTS is composed sequentially of cAMP/PKA and nNOS/PKG pathways.</p
    corecore