1,463 research outputs found

    On the Harmonic approximation for large Josephson junction coupling charge qubits

    Full text link
    We revisit the harmonic approximation (HA) for a large Josephson junction interacting with some charge qubits through the variational approach for the quantum dynamics of the junction-qubit coupling system. By making use of numerical calculation and analytical treatment, the conditions under which HA works well can be precisely presented to control the parameters implementing the two-qubit quantum logical gate through the couplings to the large junction with harmonic oscillator (HO) Hamiltonian.Comment: 7 pages, 3 figure

    Gyration radius of a circular polymer under a topological constraint with excluded volume

    Full text link
    It is nontrivial whether the average size of a ring polymer should become smaller or larger under a topological constraint. Making use of some knot invariants, we evaluate numerically the mean square radius of gyration for ring polymers having a fixed knot type, where the ring polymers are given by self-avoiding polygons consisting of freely-jointed hard cylinders. We obtain plots of the gyration radius versus the number of polygonal nodes for the trivial, trefoil and figure-eight knots. We discuss possible asymptotic behaviors of the gyration radius under the topological constraint. In the asymptotic limit, the size of a ring polymer with a given knot is larger than that of no topological constraint when the polymer is thin, and the effective expansion becomes weak when the polymer is thick enough.Comment: 12pages,3figure

    Geometrical complexity of conformations of ring polymers under topological constraints

    Full text link
    One measure of geometrical complexity of a spatial curve is the number of crossings in a planar projection of the curve. For NN-noded ring polymers with a fixed knot type, we evaluate numerically the average of the crossing number over some directions. We find that the average crossing number under the topological constraint are less than that of no topological constraint for large NN. The decrease of the geometrical complexity is significant when the thickness of polymers is small. The simulation with or without a topological constraint also shows that the average crossing number and the average size of ring polymers are independent measures of conformational complexity.Comment: 8 pages, 4figure

    Finite Element Analysis of the Displacement Adjustment Scheme for Column Bases of a 10000 m3 Spherical Tank During Whole-body Heat Treatment

    Get PDF
    AbstractThe stress of spherical tank and displacement of column bases were calculated by finite element method, considering the uneven gravity loads on support columns which was caused by manufacturing and setting errors. The preliminary displacement adjustment scheme for column bases was made, according to the safety range of column bases displacement which was determined by the maximum stress restricted by allowable stress at the set heat treatment temperatures. The final scheme was made after checking the preliminary scheme. The method of making adjustment scheme of column bases for a 10000m3 spherical tank during the whole-body heat treatment may provide a reference for other large spherical tank

    New solutions for the color-flavor locked strangelets

    Get PDF
    Recent publications rule out the negatively charged beta equilibrium strangelets in ordinary phase, and the color-flavor locked (CFL) strangelets are reported to be also positively charged. This letter presents new solutions to the system equations where CFL strangelets are slightly negatively charged. If the ratio of the square-root bag constant to the gap parameter is smaller than 170 MeV, the CFL strangelets are more stable than iron and the normal unpaired strangelets. For the same parameters, however, the positively charged CFL strangelets are more stable.Comment: 5 pages, 4 figures, Revtex4 styl

    The benefits of intermittent fasting: A review of possible mechanisms on central neurological disorders

    Get PDF
    Intermittent fasting (IF) is a dietary strategy that involves alternating periods of abstention from calorie consumption with periods of ad libitum food intake and has been shown to have beneficial effects in many ways. Recent studies have shown that IF attenuates neurodegeneration and improves cognitive decline, enhances functional recovery after stroke as well as attenuates the pathological and clinical features of epilepsy in animal models. Furthermore, IF induced several molecular and cellular adaptations in neurons that overall enhanced cellular stress resistance, synaptic plasticity, and neurogenesis. In this review, the beneficial effects of IF on central neurological disorders are discussed. The information summarised in this review can be used to help contextualise existing research and better guide the development of future IF interventions

    Resolution Tests of CsI(Tl) Scintillators Read Out by Pin Diodes

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis

    Get PDF
    Bloodstream infections rank among the most serious causes of morbidity and mortality in hospitalized patients, partly due to the long period (up to one week) required for clinical diagnosis. In this work, we have developed a sensitive method to quickly and accurately identify bacteria in human blood samples by combining optimized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and efficient immunoaffinity enrichment/separation. A library of bacteria reference mass spectra at different cell numbers was firstly built. Due to a reduced sample spot size, the reference spectra could be obtained from as few as 10 to 10(2) intact bacterial cells. Bacteria in human blood samples were then extracted using antibodies-modified magnetic beads for MS fingerprinting. By comparing the sample spectra with the reference spectra based on a cosine correlation, bacteria with concentrations as low as 500 cells per mL in blood serum and 8000 cells per mL in whole blood were identified. The proposed method was further applied to positive clinical blood cultures (BCs) provided by a local hospital, where Escherichia coli and Staphylococcus aureus were identified. Because of the method's high sensitivity, the BC time required for diagnosis can be greatly reduced. As a proof of concept, whole blood spiked with a low initial concentration (10(2) or 10(3) cells per mL) of bacteria was cultured in commercial BC bottles and analysed by the developed method after different BC times. Bacteria were successfully identified after 4 hours of BC. Therefore, an entire diagnostic process could be accurately accomplished within half a day using the newly developed method, which could facilitate the timely determination of appropriate anti-bacterial therapy and decrease the risk of mortality from bloodstream infections

    Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization

    Get PDF
    Contemporary models of intrafibrillar mineralization mechanisms are established using collagen fibrils as templates without considering the contribution from collagen-bound apatite nucleation inhibitors. However, collagen matrices destined for mineralization in vertebrates contain bound matrix proteins for intrafibrillar mineralization. Negatively charged, high\u2013molecular weight polycarboxylic acid is cross-linked to reconstituted collagen to create a model for examining the contribution of collagen-ligand interaction to intrafibrillar mineralization. Cryogenic electron microscopy and molecular dynamics simulation show that, after cross-linking to collagen, the bound polyelectrolyte caches prenucleation cluster singlets into chain-like aggregates along the fibrillar surface to increase the pool of mineralization precursors available for intrafibrillar mineralization. Higher-quality mineralized scaffolds with better biomechanical properties are achieved compared with mineralization of unmodified scaffolds in polyelectrolyte-stabilized mineralization solution. Collagen-ligand interaction provides insights on the genesis of heterogeneously mineralized tissues and the potential causes of ectopic calcification in nonmineralized body tissues

    Temperature-dependent magnetization in diluted magnetic semiconductors

    Full text link
    We calculate magnetization in magnetically doped semiconductors assuming a local exchange model of carrier-mediated ferromagnetic mechanism and using a number of complementary theoretical approaches. In general, we find that the results of our mean-field calculations, particularly the dynamical mean field theory results, give excellent qualitative agreement with the experimentally observed magnetization in systems with itinerant charge carriers, such as Ga_{1-x}Mn_xAs with 0.03 < x < 0.07, whereas our percolation-theory-based calculations agree well with the existing data in strongly insulating materials, such as Ge_{1-x}Mn_x. We comment on the issue of non-mean-field like magnetization curves and on the observed incomplete saturation magnetization values in diluted magnetic semiconductors from our theoretical perspective. In agreement with experimental observations, we find the carrier density to be the crucial parameter determining the magnetization behavior. Our calculated dependence of magnetization on external magnetic field is also in excellent agreement with the existing experimental data.Comment: 17 pages, 15 figure
    corecore