88 research outputs found

    Embedding Uncertain Knowledge Graphs

    Full text link
    Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks

    Colloidal toxic trace metals in urban riverine and estuarine waters of Yantai City, southern coast of North Yellow Sea

    Get PDF
    The environmental characteristics of colloidal toxic trace metals Cd, Cu and Pb in riverine and estuarine waters collected from two urban rivers of Yantai City in eastern China, the Guangdang and Xin'an Rivers, were investigated using a modified centrifugal ultrafiltration (CUF) method in conjunction with acid extraction and inductively coupled plasma mass spectrometry. The target metals in dissolved pool were divided into four CUF fractions, i.e. <1 kDa, 1-3 kDa, 3-10 kDa and 10 kDa-0.2 mu m, and the results showed that colloidal Cd, Cu and Pb were dominated by 1-10 kDa (1-3 and 3-10 kDa), 1-3 kDa and 10 kDa-0.2 lm fractions, respectively. The coagulation/flocculation of low-molecular-weight (1-10 kDa) colloidal Cd and Cu in the estuaries was obvious and strong, while the enrichment of dissolved Pb in the 10 kDa-0.2 lm fraction may be mainly related to its biogeochemical interactions with Fe-oxides, which is easy to occur in macromolecular colloids. In addition, the actual molecular weight cutoffs (MWCOs) of the three used CUF units with nominal MWCOs of 1, 3 and 10 kDa were determined to be 4.9, 8.5 and 33.9 kDa, respectively, indicating that membrane calibration is essential for explaining the actual fraction of dissolved trace metals and verifying the integrity of ultrafiltration membrane. Overall, the results in this study provide a further understanding of the heterogeneity in biogeochemical features, migration and fate of toxic trace metals in aquatic ecosystems, especially that of the river-sea mixing zone. (C) 2019 Elsevier B.V. All rights reserved

    Selective Autophagy of BES1 Mediated by DSK2 Balances Plant Growth and Survival

    Get PDF
    Plants encounter a variety of stresses and must fine-tune their growth and stress-response programs to best suit their environment. BES1 functions as a master regulator in the brassinosteroid (BR) pathway that promotes plant growth. Here, we show that BES1 interacts with the ubiquitin receptor protein DSK2 and is targeted to the autophagy pathway during stress via the interaction of DSK2 with ATG8, a ubiquitin-like protein directing autophagosome formation and cargo recruitment. Additionally, DSK2 is phosphorylated by the GSK3-like kinase BIN2, a negative regulator in the BR pathway. BIN2 phosphorylation of DSK2 flanking its ATG8 interacting motifs (AIMs) promotes DSK2-ATG8 interaction, thereby targeting BES1 for degradation. Accordingly, loss-of-function dsk2 mutants accumulate BES1, have altered global gene expression profiles, and have compromised stress responses. Our results thus reveal that plants coordinate growth and stress responses by integrating BR and autophagy pathways and identify the molecular basis of this crosstalk

    PCR Techniques and Their Clinical Applications

    Get PDF
    Kary B. Mullis developed a revolutionary method name polymerase chain reaction (PCR) in 1983, which can synthesize new strand of DNA complementary to the template strand of DNA and produce billions of copies of a DNA fragment only in few hours. Denaturation, annealing, and extension are the three primary steps involved in the PCR process, which generally requires thermocyclers, DNA template, a pair of primers, Taq polymerase, nucleotides, buffers, etc. With the development of PCR, from traditional PCR, quantitative PCR, to next digital PCR, PCR has become a powerful tool in life sciences and medicine. Applications of PCR techniques for infectious diseases include specific or broad-spectrum pathogen detection, assessment and surveillance of emerging infections, early detection of biological threat agents, and antimicrobial resistance analysis. Applications of PCR techniques for genetic diseases include prenatal diagnosis and screening of neonatal genetic diseases. Applications of PCR techniques for cancer research include tumor-related gene detection. This chapter aimed to discuss about the different types of PCR techniques, including traditional PCR, quantitative PCR, digital PCR, etc., and their applications for rapid detection, mutation screen or diagnosis in infectious diseases, inherited diseases, cancer, and other diseases

    The influence of summer hypoxia on sedimentary phosphorus biogeochemistry in a coastal scallop farming area, North Yellow Sea

    Get PDF
    In situ field investigations coupled with laboratory incubations were employed to explore the surface sedimentary phosphorus (P) cycle in a mariculture area adjacent to the Yangma Island suffering from summer hypoxia in the North Yellow Sea. Five forms of P were fractionated, namely exchangeable P (Ex-P), iron-bound P (Fe-P), authigenic apatite (Ca-P), detrital P (De-P) and organic P (OP). Total P (TP) varied from 13.42 to 23.88 mu mol g(-1) with the main form of inorganic P (IP). The benthic phosphate (DIP) fluxes were calculated based on incubation experiments. The results show that the sediment was an important source of P in summer with similar to 39% of the bioavailable P (Bio-P) recycled back into the water column. However, the sediment acted a sink of P in autumn. The benthic DIP fluxes were mainly controlled by the remobilizing of Fe-P, Ex-P and OP under contrasting redox conditions. In August (hypoxia season), similar to 0.92 mu mol g(-1) of Fe-P and similar to 0.52 mu mol g(-1) of OP could be transformed to DIP and released into water, while similar to 0.36 mu mol g(-1) of DIP was adsorbed to clay minerals. In November (non-hypoxia season), however, similar to 0.54 mu mol g(-1) of OP was converted into DIP, while similar to 0.55 mu mol g(-1) and similar to 0.28 mu mol g(-1) of DIP was adsorbed to clay minerals and bind to iron oxides. Furthermore, scallop farming activities also affected the P mobilization through biological deposition and reduced hydrodynamic conditions. The burial fluxes of P varied from 11.67 to 20.78 mu mol cm(-2) yr(-1) and its burial efficiency was 84.7-100%, which was consistent with that in most of the marginal seas worldwide. This study reveals that hypoxia and scallop farming activities can significantly promote sedimentary P mobility, thereby causing high benthic DIP flux in coastal waters. (C) 2020 Elsevier B.V. All rights reserved
    • 

    corecore