7,312 research outputs found

    Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Get PDF
    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators and logic devices

    S3 x Z2 model for neutrino mass matrices

    Full text link
    We propose a model for lepton mass matrices based on the seesaw mechanism, a complex scalar gauge singlet and a horizontal symmetry S_3 \times \mathbbm{Z}_2. In a suitable weak basis, the charged-lepton mass matrix and the neutrino Dirac mass matrix are diagonal, but the vacuum expectation value of the scalar gauge singlet renders the Majorana mass matrix of the right-handed neutrinos non-diagonal, thereby generating lepton mixing. When the symmetry S3S_3 is not broken in the scalar potential, the effective light-neutrino Majorana mass matrix enjoys ÎĽ\mu--Ď„\tau interchange symmetry, thus predicting maximal atmospheric neutrino mixing together with Ue3=0U_{e3} = 0. A partial and less predictive form of ÎĽ\mu--Ď„\tau interchange symmetry is obtained when the symmetry S3S_3 is softly broken in the scalar potential. Enlarging the symmetry group S_3 \times \mathbbm{Z}_2 by an additional discrete electron-number symmetry \mathbbm{Z}_2^{(e)}, a more predicitive model is obtained, which is in practice indistinguishable from a previous one based on the group D4D_4.Comment: 13 pages, 3 figures, final version for publication in JHE

    Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism

    Get PDF
    Mitochondria house metabolic pathways that impact most aspects of cellular physiology. While metabolite profiling by mass spectrometry is widely applied at the whole-cell level, it is not routinely possible to measure the concentrations of small molecules in mammalian organelles. We describe a method for the rapid and specific isolation of mitochondria and use it in tandem with a database of predicted mitochondrial metabolites (“MITObolome”) to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function. Disruption of the RC reveals extensive compartmentalization of mitochondrial metabolism and signatures unique to the inhibition of each RC complex. Pyruvate enables the proliferation of RC-deficient cells but has surprisingly limited effects on matrix contents. Interestingly, despite failing to restore matrix NADH/NAD balance, pyruvate does increase aspartate, likely through the exchange of matrix glutamate for cytosolic aspartate. We demonstrate the value of mitochondrial metabolite profiling and describe a strategy applicable to other organelles

    Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras

    Get PDF
    The genetic dependencies of human cancers widely vary. Here, we catalog this heterogeneity and use it to identify functional gene interactions and genotype-dependent liabilities in cancer. By using genome-wide CRISPR-based screens, we generate a gene essentiality dataset across 14 human acute myeloid leukemia (AML) cell lines. Sets of genes with correlated patterns of essentiality across the lines reveal new gene relationships, the essential substrates of enzymes, and the molecular functions of uncharacterized proteins. Comparisons of differentially essential genes between Ras-dependent and -independent lines uncover synthetic lethal partners of oncogenic Ras. Screens in both human AML and engineered mouse pro-B cells converge on a surprisingly small number of genes in the Ras processing and MAPK pathways and pinpoint PREX1 as an AML-specific activator of MAPK signaling. Our findings suggest general strategies for defining mammalian gene networks and synthetic lethal interactions by exploiting the natural genetic and epigenetic diversity of human cancer cells. Keywords: CRISPR; AML; synthetic lethality; gene networks; RAS; genetic screensNational Institutes of Health (U.S.) (Grant CA103866)National Institutes of Health (U.S.) (Grant F31CA189437

    Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model

    Full text link
    The ground states of the two-dimensional repulsive Hubbard model are studied within the unrestricted Hartree-Fock (UHF) theory. Magnetic and charge properties are determined by systematic, large-scale, exact numerical calculations, and quantified as a function of electron doping hh. In the solution of the self-consistent UHF equations, multiple initial configurations and simulated annealing are used to facilitate convergence to the global minimum. New approaches are employed to minimize finite-size effects in order to reach the thermodynamic limit. At low to moderate interacting strengths and low doping, the UHF ground state is a linear spin-density wave (l-SDW), with antiferromagnetic order and a modulating wave. The wavelength of the modulating wave is 2/h2/h. Corresponding charge order exists but is substantially weaker than the spin order, hence holes are mobile. As the interaction is increased, the l-SDW states evolves into several different phases, with the holes eventually becoming localized. A simple pairing model is presented with analytic calculations for low interaction strength and small doping, to help understand the numerical results and provide a physical picture for the properties of the SDW ground state. By comparison with recent many-body calculations, it is shown that, for intermediate interactions, the UHF solution provides a good description of the magnetic correlations in the true ground state of the Hubbard model.Comment: 13 pages, 17 figure, 0 table

    Restriction of HIV-1 Genotypes in Breast Milk Does Not Account for the Population Transmission Genetic Bottleneck That Occurs following Transmission

    Get PDF
    BACKGROUND. Breast milk transmission of HIV-1 remains a major route of pediatric infection. Defining the characteristics of viral variants to which breastfeeding infants are exposed is important for understanding the genetic bottleneck that occurs in the majority of mother-to-child transmissions. The blood-milk epithelial barrier markedly restricts the quantity of HIV-1 in breast milk, even in the absence of antiretroviral drugs. The basis of this restriction and the genetic relationship between breast milk and blood variants are not well established. METHODOLOGY/PRINCIPAL FINDINGS. We compared 356 HIV-1 subtype C gp160 envelope (env) gene sequences from the plasma and breast milk of 13 breastfeeding women. A trend towards lower viral population diversity and divergence in breast milk was observed, potentially indicative of clonal expansion within the breast. No differences in potential N-linked glycosylation site numbers or in gp160 variable loop amino acid lengths were identified. Genetic compartmentalization was evident in only one out of six subjects in whom contemporaneously obtained samples were studied. However, in samples that were collected 10 or more days apart, six of seven subjects were classified as having compartmentalized viral populations, highlighting the necessity of contemporaneous sampling for genetic compartmentalization studies. We found evidence of CXCR4 co-receptor using viruses in breast milk and blood in nine out of the thirteen subjects, but no evidence of preferential localization of these variants in either tissue. CONCLUSIONS/SIGNIFICANCE. Despite marked restriction of HIV-1 quantities in milk, our data indicate intermixing of virus between blood and breast milk. Thus, we found no evidence that a restriction in viral genotype diversity in breast milk accounts for the genetic bottleneck observed following transmission. In addition, our results highlight the rapidity of HIV-1 env evolution and the importance of sample timing in analyses of gene flow.National Institute of Child Health and Human Development; National Institutes of Health (R01 HD 39611, R01 HD 40777); International Maternal Pediatric Adolescent AIDS Clinical Trials Group (U01 AI068632-01); National Institutes of Health Cellular, Biochemical; Molecular Sciences Training Program Grant (T 32 067587

    “Choking Under Pressure” in Older Drivers

    Get PDF
    Aging can impair executive control and emotion regulation, affecting driver decision-making and behavior, especially under stress. We used an interactive driving simulator to investigate ability to make safe left-turns across oncoming traffic under pressure in 13 older (\u3e 65 years old) and 16 middle-aged (35-56 years old) drivers. Drivers made left-turns at an uncontrolled intersection with moderately heavy oncoming traffic. Gaps between oncoming vehicles varied and increased gradually from 2 s to 10 s. Drivers made two left-turns with a vehicle honking aggressively behind (pressure condition), and two left-turns without the honking vehicle (control condition). Results showed that middle-aged drivers made more cautious turning decisions under pressure (by waiting for larger and safer gaps, p \u3c .001), but older drivers did not. Further, older driver turning paths deviated under pressure compared to the control condition (p \u3c .05), but the middle-aged group did not. Moreover, across all subjects, better executive function was significantly correlated with larger increases of accepted gap size from control to honking (p \u3c .01). The findings suggest that older drivers are more sensitive to traffic challenges from environmental pressure and that neural models of older driver performance and safety must factor in age-related changes in executive control and emotion processing

    A mesoscopic ring as a XNOR gate: An exact result

    Full text link
    We describe XNOR gate response in a mesoscopic ring threaded by a magnetic flux Ď•\phi. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, VaV_a and VbV_b, are applied in one arm of the ring which are treated as the inputs of the XNOR gate. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strength, magnetic flux and gate voltages. Our theoretical study shows that, for a particular value of Ď•\phi (=Ď•0/2=\phi_0/2) (Ď•0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the two inputs to the gate are the same, while if one but not both inputs are high (1), a low output current (0) results. It clearly exhibits the XNOR gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure
    • …
    corecore