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SUMMARY

The genetic dependencies of human cancers widely vary. Here, we catalog this heterogeneity and 

use it to identify functional gene interactions and genotype-dependent liabilities in cancer. By 

using genome-wide CRISPR-based screens, we generate a gene essentiality dataset across 14 

human acute myeloid leukemia (AML) cell lines. Sets of genes with correlated patterns of 

essentiality across the lines reveal new gene relationships, the essential substrates of enzymes, and 

the molecular functions of uncharacterized proteins. Comparisons of differentially essential genes 

between Ras-dependent and -independent lines uncover synthetic lethal partners of oncogenic Ras. 

Screens in both human AML and engineered mouse pro-B cells converge on a surprisingly small 

number of genes in the Ras processing and MAPK pathways and pinpoint PREX1 as an AML-

specific activator of MAPK signaling. Our findings suggest general strategies for defining 

mammalian gene networks and synthetic lethal interactions by exploiting the natural genetic and 

epigenetic diversity of human cancer cells.

In Brief

Charting global genetic interaction networks in human cells with CRISPR-based screens uncovers 

key Ras interactors.
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INTRODUCTION

Cancer is a heterogeneous disease encompassing hundreds of distinct subtypes that differ in 

genetic makeup and epigenetic state. Because of this heterogeneity, different cancers rely on 

different pathways for survival as reflected in striking differences in their responses to 

anticancer agents (Barretina et al., 2012; Garnett et al., 2012). CRISPR-based screens make 

it possible to systematically identify the genes required for the survival and proliferation of 

mammalian cells (Gilbert et al., 2014; Koike-Yusa et al., 2014; Shalem et al., 2014; Wang et 

al., 2014). Studies in a small number of human cancer cell lines defined a common set of 

essential genes that participate in basic cellular processes (Hart et al., 2015; Wang et al., 

2015). With a gene essentiality catalog that covers a larger number of cell lines, it should be 

possible to identify genes required in some cancer cells, but not others, and to use these 

differential essentialities to (1) define sets of genes that function together and (2) pinpoint 

the genetic liabilities specific to particular cancer subtypes.

The essentiality pattern of a gene across many cell lines (its “essentiality profile”) should 

help decipher molecular function. Genes that act together (e.g., in a common molecular 

complex or pathway) will likely have similar profiles so that the function of an 

uncharacterized gene can be inferred by comparing its profile with those of other genes. As 

many biological processes impact cell proliferation, this “guilt-by-association” approach 

should be broadly applicable and may circumvent the need for pathway-specific assays. 

Analogous studies have been successful in mapping genetic networks in budding yeast using 

panels of engineered strains with defined lesions in a common genetic background 

(Costanzo et al., 2016; Hughes et al., 2000). As the spectrum of human cancers captures a 

comparatively broader range of cell states, analyses of cancer cell lines may allow for an 

even larger exploration of gene interactions and how they vary across cell types.

A catalog of essential genes across human cancer cell lines should greatly aid efforts to find 

targets for cancer therapy. While sequencing studies of the cancer genome are providing an 
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increasingly complete description of the genetic alterations that accompany tumorigenesis, 

functional studies are needed to assess the contribution of candidate oncogenes to cancer cell 

survival (Boehm and Hahn, 2011; Garraway and Lander, 2013; Lawrence et al., 2014). 

Furthermore, unbiased surveys of gene essentiality can reveal genes that are not mutated but 

are nonetheless critical for optimal cancer cell fitness (Cheung et al., 2011; Cowley et al., 

2014; Kim et al., 2013; Marcotte et al., 2012; Schlabach et al., 2008; Toledo et al. 2015; 

Tzelepis et al. 2016). By comparing essentiality profiles across large numbers of 

genomically characterized cell lines, it should be possible to identify genes selectively 

required in cells carrying a specific mutation (Kaelin, 2005). This synthetic lethality 

paradigm is well illustrated by the interaction between the tumor suppressors BRCA1/2 and 

the poly(ADP-ribose) polymerases (PARPs), two gene families involved in parallel DNA 

repair pathways (Farmer et al., 2005). By exploiting synthetic lethality, it may be possible to 

develop therapies that treat cancers driven by the loss of a tumor suppressor or an activating 

mutation in a gene product that is “undruggable.” A comprehensive gene essentiality dataset 

will also address if synthetic lethal interactions tend to occur between genes acting in the 

same or parallel pathways and how they may be shaped by cellular context.

We perform CRISPR-based genetic screens to generate a comprehensive gene essentiality 

dataset for a panel of genomically characterized acute myeloid leukemia (AML) cell lines. 

Analysis of these data and follow-up work reveals the molecular functions of previously 

unstudied genes and identified new synthetic lethal interactions with mutant Ras, the most 

common human oncogene. It should be possible to apply the approaches we describe to 

systematically map functional gene networks in mammalian cells and identify targetable 

liabilities in human cancers.

RESULTS

Differences in Gene Essentiality Reflect the Distinguishing Characteristics of AML Cell 
Lines

We performed CRISPR-based screens on a panel of 14 human AML cell lines selected from 

the Cancer Cell Line Encyclopedia (Figure 1A; Tables S1, S2, and S3; see the STAR 

Methods) (Barretina et al., 2012). For each gene in each line, we defined its CRISPR score 

(CS) as the average log2 fold-change in the abundance of all single guide (sg)RNAs 

targeting the gene after 14 population doublings. Replicate screens of NB4 cells were well 

correlated and the CS from our screens could predict the essentiality of homologs in S. 
cerevisiae (Figures 1B, S1A, and S1B; see the STAR Methods). Consistent with prior work, 

essential genes highly overlapped between lines and were strongly enriched for roles in 

fundamental cellular processes (Figure 1C). Additionally, differences in gene essentiality 

between lines reflected known characteristics, such as cytokine dependence and 

developmental origin, of each of the lines (Figures S1C–S1F).

We previously demonstrated, and others recently confirmed, that Cas9-mediated cleavage of 

amplified genomic regions elicits a DNA damage response that causes cell death (Aguirre et 

al., 2016; Munoz et al., 2016; Wang et al., 2015). Thus, the low CRISPR scores of genes in 

amplified regions do not necessarily reflect the essentiality of the encoded products and so 

must be removed from datasets prior to further analyses. We devised a sliding window score 
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(SWS) to identify contiguous stretches of the genome enriched for low scoring genes (see 

the STAR Methods). The SWS analysis identified several peaks across the genome of HEL 

cells, all of which corresponded to regions of high-level genomic amplification; the highest 

peak, residing in an amplicon on 9p24.1, contained JAK2, a mutationally activated driver in 

these cells (Figures 1D–1F) (Quentmeier et al., 2006). High SWS peaks were identified in 

several of the other cell lines; the genes within these peaks were also present at high copy 

number (Figures S1G–S1H). Thus, this simple filtering procedure, which does not rely on 

DNA copy number information, can be used to identify genes whose low CS are likely 

artifactual and thus potentially confounding to downstream analyses.

Correlated Gene Essentiality across Cell Lines Reveals Functional Gene Relationships

Genes acting in the same cellular pathway should show similar patterns of essentiality across 

cell lines, raising the possibility that functional gene networks can be mapped through 

correlation-based analysis of gene essentiality profiles (Figure 2A). To obtain biologically 

meaningful gene associations, comparisons must be made between genes showing 

significant differences in essentiality between lines. Therefore, we chose the most variably 

essential genes as a query set and searched for co-essential partners for each of these genes. 

These associations reveal known and novel gene relationships that encompass several types 

of functional interactions.

Many sets of highly correlated genes encoded physically interacting proteins, including 

heterodimers involved in transcription (LDB1 and LMO2), PI3-Kγ signaling (PIK3CG and 

PIK3R5), amino acid transport (SLC7A5 and SLC3A2), and components of two complexes 

in the mTOR pathway, mTORC2 (MAPKAP1, MLST8, and RICTOR) and GATOR1 

(NPRL2, NPRL3, and DEPDC5) (Figures 2B, 2C, and S2A). This analysis also identified 

larger protein complexes; nearly all non-redundant components of the Fanconi anemia DNA 

repair machinery and the GM-CSF receptor pathway clustered tightly together (Figures 2D 

and S2B). Other sets of genes encoded enzymes catalyzing successive reactions in metabolic 

pathways (Figure 2E).

Interestingly, we identified a single case of anti-correlation between the p53 tumor 

suppressor gene (TP53) and its negative regulators (Figure 2F). The sgRNAs targeting TP53 
provided a selective advantage (indicated by positive CS) to cells with wild-type, but not 

mutant, p53. In these same lines, four negative regulators of p53, TERF1, a telomere-binding 

factor; PPM1D, a p53-induced phosphatase; MDM2, an E3 ubiquitin ligase for p53; and 

MDM4, an inhibitor of p53 transactivation, were selectively required, as their loss 

presumably induced p53-mediated cell-cycle arrest or apoptosis (Figure S2C).

The correlation analysis also revealed several unexpected gene relationships. For example, 

the Furin protease cleaves and activates a diverse array of cytokines and growth factor 

receptors, but in our dataset the essentiality of FURIN correlated very highly with that of 

only one its substrates, the insulin-like growth factor receptor (IGF1R), and its adaptor IRS2 
(Bassi et al., 2005) (Figure 2G). This suggests that IGF1R processing may be the only 

essential function of Furin in cells grown in culture.
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We could also examine the opposite problem: identifying enzymes responsible for the 

maturation of a precursor protein. Activation of the transcription factor Nrf-1 (NFE2L1) 

involves retrotranslocation of Nrf-1 into the cytosol via the ER-associated degradation 

(ERAD) pathway, deglycosylation by PNGase (NGLY1) in the ER, and partial proteolytic 

digestion by an unidentified protease (Radhakrishnan et al., 2014). Our dataset showed 

correlated essentiality between NFE2L1, NGLY1, and the endopeptidase DDI2 (Figure 2G). 

These patterns of gene essentiality suggest that DDI2 may be the unknown protease that 

cleaves Nrf-1. Indeed, very recent work in C. elegans indicates that the homolog of DDI2 

(C01G5.6) does act on the worm version Nrf-1 (Lehrbach and Ruvkun, 2016).

Our analysis also predicted associations between genes for which no functional relationship 

has been previously established (Figure 2H). Lastly, several genes of unknown function, 

such as C1orf27 and C17orf89, had correlated essentialities with genes encoding 

components of well-characterized pathways, suggesting that they may represent new 

pathway members. We performed extensive follow-up experiments to determine whether 

this was indeed the case

C1orf27 Interacts with UFSP2 and Is Required for deUFMylation

The essentiality of C1orf27 correlated with (1) the essentiality of several genes encoding 

components of the UFMylation machinery, a ubiquitin-like protein modification system that 

attaches UFM1 to proteins, and (2) UFM1 expression levels (Figures 3A and 3B) (Komatsu 

et al., 2004). Interestingly, prior work in C. elegans reported that homologs of C1orf27 and 

its most closely correlated partner, UFSP2, a deUFMylating enzyme, localize to the ER 

where they directly interact with each other (Chen et al., 2014). We confirmed these findings 

in human embryonic kidney (HEK)-293T cells stably expressing recombinant human 

C1orf27 and UFSP2 (Figures 3C and 3D).

C1orf27 is predicted to have a C-terminal transmembrane anchor, which may serve to tether 

it and UFSP2 to the ER surface (Figure S3A). Consistent with this model, in C1orf27-null 

cells, UFSP2 failed to localize to the ER and instead was dispersed throughout the 

cytoplasm (Figure 3E). We probed lysates of C1orf27 null cells, as well as from cells 

lacking UFM1, UFSP2, and the E1-like UFM1-activating enzyme, UBA5, with an antibody 

that recognizes free and conjugated UFM1 (Figure 3F). As expected, inactivation of UFM1 
or UBA5 led to the complete loss of UFMylation activity. In contrast, loss of C1orf27 or 

UFSP2 led to the accumulation of UFM1-conjugated proteins, consistent with a defect in 

deUFMylation. These results suggest that C1orf27 is an obligate partner of UFSP2 and that 

this interaction is required for the proper localization and activity of UFSP2.

C17orf89 Is an Assembly Factor for Mitochondrial Complex I

C17orf89, clustered with a large group of mitochondrial genes and in HEK293T cells 

C17orf89 co-localized with the mitochondrial marker COX IV (Figures 3G and 3H). Mass 

spectrometric analysis of anti-FLAG-C17orf89 immunoprecipitates revealed an interaction 

with NDUFAF5, a complex I assembly factor, which we confirmed in co-

immunoprecipitation experiments (Figures 3I and S3B). Strikingly, the mitochondrial gene 

cluster contained several complex I assembly factors, with NDUFAF5 being the top hit.
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Loss of C17orf89 specifically destabilized complex I, but not other respiratory chain, 

complexes (Figures 3J and S3C). Consistent with a defect in OXPHOS, C17orf89-null cells 

consumed oxygen at a profoundly reduced rate and required the addition of pyruvate to the 

media to maintain optimal proliferation (Figures 3K and S3D). Importantly, expression of a 

sgRNA-resistant cDNA rescued these phenotypes. These findings indicate that C17orf89 
encodes a component of the complex I assembly machinery and are in agreement with very 

recent work which characterized C17orf89 via a proteomics-based approach (Floyd et al., 

2016).

Identification of Driver Oncogenes Using an Integrative Genomic Approach

Our gene essentiality catalog can also be used to determine whether a cell line carrying a 

specific oncogene is actually dependent on the mutated gene. A cell line might not be 

dependent for several reasons, including that the observed mutation does not actually 

activate the gene, that the oncogene was required for tumor initiation, but not maintenance, 

or that the cell has acquired a bypass mutation. We compiled a list of candidate oncogenes 

altered in each of the cytokine-independent AML cell lines based on publically available 

mutational and cytogenetic data and assessed the contribution of each candidate to cell 

fitness using our essentiality dataset. Overall, this analysis pinpointed key driver events, 

including common oncogenic mutations and rare translocations, in 11 of the 12 lines 

assessed. (As discussed above, HEL cells harbor a recurrent JAK2V617F mutation, but it 

resides in an amplified region and could not be interrogated in our screens.)

Interestingly, we found that even cell lines harboring the same oncogene showed differences 

in dependence. Four of the cell lines carry activating mutations in FLT3, an established 

oncogene in AML; while FLT3 scored as an essential gene in three of these, it did not in 

PL-21 cells, which were also insensitive to quizartinib, a FLT3 inhibitor (Figures 4A and 

S4A) (Quentmeier et al., 2003).

Examination of other alterations in PL-21 revealed an uncommon mutation at codon 146 of 

the KRAS proto-oncogene. Residue 146 lies within the nucleotide-binding pocket of Kras 

and mutation of the corresponding site in Hras enhances its nucleotide exchange activity 

(Feig and Cooper, 1988). Consistent with Ras pathway activation in PL-21, KRAS was 

essential in this line. Two additional lines had mutations in KRAS and three others in 

NRAS. In all cases, the mutant Ras isoform was selectively essential, whereas wild-type Ras 

lines did not require any of the individual Ras isoforms.

Our library includes on average ten sgRNAs tiled across the body of each gene allowing for 

fine-scale analysis of gene fusions. EOL-1 cells harbor a recurrent FIP1L1-PDGFRA fusion 

gene; in these cells, only sgRNAs targeting the fused portion of PDGFRA scored, resulting 

in an atypical, position-dependent pattern of sgRNA depletion (Figure 4B). Translocation 

partners of the KMT2A (MLL) oncogene showed similar patterns in MV4;11 and THP-1 

cells (Figure S4B).

We applied this “partial gene essentiality” signature to search for translocated genes in OCI-

AML2, which harbors no recurrent oncogenic drivers. Remarkably, our analysis uncovered 

RAF1, which encodes c-Raf, a major Ras effector that regulates the MAPK signaling 
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cascade. Consistent with a previous report, RNA sequencing revealed a chimeric transcript 

spanning exon 4 of MBNL1 and exon 5 of RAF1 that results in the production of a 90-kDa 

gene product (Figures 4C and 4D) (Klijn et al., 2015). This unique rearrangement removes 

the N-terminal autoinhibitory domain of c-Raf and likely leads to MAPK pathway 

activation.

Together, these results illustrate how functional data derived from loss-of-function screens 

can be integrated with genomic information to identify and validate driver oncogenes.

Two Independent Screening Approaches Reveal Common Synthetic Lethal Interactions 
with Oncogenic Ras

We also used our data to identify genes that are selectively essential in cell lines carrying 

particular driver mutations—that is, which have synthetic lethal interactions with the 

mutated gene. Such genes will typically not be mutated and thus cannot be reliably detected 

through genome sequencing. They are of significant interest because they may provide drug 

targets in tumors where the cancer-causing genes cannot readily be targeted, for example, in 

those driven by the loss of tumor suppressor genes or by oncogenes that have proven 

difficult to inhibit directly.

Mutations in the Ras family of GTPases (KRAS, NRAS, and, less frequently, HRAS) are 

commonly found in many human cancers, including AML, and are associated with poor 

clinical prognoses (Cox et al., 2014). Ras controls a diverse array of cellular processes 

through many downstream effectors. As each of these effector pathways is implicated in 

various aspects of Ras-driven tumorigenesis across different cellular contexts, it has been 

difficult to dissect the contribution of each pathway to the overall survival and proliferation 

of cancer cells. Furthermore, it is even less clear if Ras hyper-activation may somehow 

confer dependence on other, unrelated cellular pathways. Systematic screening approaches 

have greatly accelerated efforts to find liabilities in Ras-driven cancers (Barbie et al., 2009; 

Luo et al., 2009a). Here, we employed two independent screening strategies to search for 

synthetic lethal partners of oncogenic Ras (Figure 5A).

In our initial approach, we looked for genes that showed differential essentiality across the 

12 cytokine-independent AML cell lines in our panel. Comparisons between the six Ras-

dependent and six Ras-independent revealed five genes that were required only in the 

context of oncogenic Ras. Two genes (RCE1 and ICMT) are involved in the maturation of 

Ras. Two additional genes (RAF1 and SHOC2) are involved in MAPK pathway signaling. 

The final gene, PREX1, did not immediately fit in either category and is discussed later in its 

own section.

Ras is synthesized as an inactive precursor in the cytosol and converted into its mature 

membrane-associated form through three enzymatic steps: (1) prenylation of the CAAX box 

by farne-syltransferase (FTase) or geranylgeranyltransferase I (GGTase I), (2) cleavage of 

the terminal AAX residues by Ras converting enzyme (Rce1), and (3) methylation of the 

terminal cysteine residue by isoprenylcysteine carboxyl methyltransferase (Icmt). FNTB, 

which encodes a subunit of the FTase, was essential in all cell lines screened, suggesting that 
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FTase acts on a universally essential protein (Figure S5A). RCE1 and ICMT, however, did 

show differential essentiality, suggesting that they modify a more restricted set of substrates.

Among the Ras effector genes, RAF1 and SHOC2 were the only two selectively essential in 

all Ras-driven lines. RAF1 encodes c-Raf, a component of the MAPK signaling cascade 

needed for the initiation of Kras-driven lung cancers (Blasco et al., 2011; Karreth et al., 

2011). SHOC2 encodes a leucine-rich repeat-containing protein that serves as a scaffold for 

Ras and c-Raf (Rodriguez-Viciana et al., 2006). Similar to RAF1 and other Ras pathway 

members, mutations in SHOC2 have been identified in patients with Noonan-like syndromes 

(Cordeddu et al., 2009). Loss of SHOC2 reduced MAPK pathway activity in Ras mutant 

SKM-1 cells, but, importantly, not in OCI-AML2 cells in which RAF1 is constitutively 

active (Figure 5B).

In parallel, we devised an isogenic screening approach that did not rely on the use of 

genetically heterogeneous cancer cell lines. For this purpose, we screened Ba/F3 cells, a 

murine pro-B cell line, which we engineered to express oncogenic NRAS (CGN Ba/F3) 

(Figure 5A; Tables S4 and S5; see the STAR Methods). CGN Ba/F3 cells cultured in the 

absence of IL-3 were dependent on Ras/MAPK signaling, but, critically, this dependence 

was relieved by the addition of IL-3. Therefore, we could identify Ras-associated 

vulnerabilities by comparing gene essentiality between these two conditions. Notably, 

because the genetic background of the cells remains fixed in this experiment, differences in 

essentiality can be directly attributed to Ras dependency (Figure S5C).

Replicate screens revealed a common set of genes selectively required in the absence of 

IL-3. Remarkably, Shoc2, Raf1, Rce1, and Icmt all scored in the top 0.1% of all genes 

indicating a very high degree of overlap between the two screening approaches. Additional 

MAPK pathway members (Braf, Rps6ka1, and Mapk1) scored strongly as well. BRAF and 

MAPK1 did show a differential essentiality in the human AML lines but were dispensable in 

some of the mutant Ras lines presumably because they expressed redundant members of 

these kinase families (Figure S5A). We also identified an Nras-specific dependency. After 

methylation by Icmt, Nras, but not the major Kras isoform (Kras-4B), is palmitoylated. 

Golga7/GOLGA7, which encodes a subunit of the palmitoyltransferase, scored in CGN 

Ba/F3 and two of the three mutant NRAS AML lines, but not in any of the mutant KRAS or 

wild-type Ras lines (Swarthout et al., 2005). Other genes, such as the ubiquitin-specific 

peptidase Usp32/USP32, scored strongly in CGN Ba/F3 cells and a subset of the mutant Ras 

AML lines; the biological basis for its selective essentiality remains to be defined.

These two independent screening approaches converged on a restricted set of common 

dependencies required for the survival and proliferation of Ras-driven cancers. Intriguingly, 

the majority of these genes are involved in the maturation of Ras itself and the downstream 

MAPK signaling pathway (Figure 5C).

MAPK Pathway Activation Requires PREX1 in Mutant Ras AML Cells

The top scoring hit from the human AML screen was PREX1, which encodes a Dbl 

homology-pleckstrin homology domain-containing (DH-PH) guanine nucleotide exchange 

factor (GEF) for the Rac GTPases (Figure 6A) (Welch et al., 2002). Oddly, while PREX1 
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scored strongly in all six mutant Ras AML cell lines, it did not score highly in the CGN 

Ba/F3 cells. To begin to understand this difference, we designed a focused sgRNA library 

targeting synthetic lethal candidate and control genes and used it to pro-file: (1) the 12 

cytokine-independent AML lines used in the genome-wide screens; (2) a validation set of 

five additional mutant Ras AML lines; and (3) 11 mutant and 14 wild-type Ras non-AML 

cancer cell lines derived from other hematopoietic lineages (Tables S6, S7, and S8). For all 

12 of the original AML cell lines, the focused sgRNA library screen results showed the 

highest correlation with those from genome-wide screens conducted in the same line (Figure 

S6).

In all cases, the presence of an amplified or mutated allele of KRAS or NRAS correlated 

with dependence on KRAS and NRAS, respectively (Figure 6B). The downstream MAPK 

pathway members, RAF1 and SHOC2, were selectively essential in all the Ras-dependent 

lines as well. The requirement for PREX1, however, differed between the cancer types. 

Whereas PREX1 was selectively essential in both the original and validation sets of AML 

cell lines harboring mutant Ras, there was no difference in PREX1 essentiality between 

wild-type and mutant Ras lines in the other hematological cancer types.

Given the established biochemical function of PREX1, its importance in mutant Ras AML 

cells likely reflects a requirement for Rac pathway activity. Consistent with this possibility, 

Rac1/RAC1 scored as essential in the CGN Ba/F3 cells and to some degree in the human 

AML lines as well (Figures S5A and S5B). To test the importance of the Rac pathway, we 

asked whether forced activation of Rac1 could bypass the requirement for PREX1 by 

screening SKM-1 cells expressing a constitutively active mutant of Rac1 (Rac1G12V) or 

wild-type Rac1. Consistent with our hypothesis, the dependence on PREX1 was relieved in 

Rac1G12V-expressing cells (Figures 6C and 6D).

Previous studies demonstrate that PREX1 can influence MAPK signaling, suggesting that 

like the other screen hits, it may also act on the MAPK pathway (Ebi et al., 2013). To 

examine this possibility, we screened the focused library in SKM-1 cells stably expressing a 

constitutively active mutant of Mek1 (Mek1DD) or wild-type Mek1. As expected, Mek1 

hyper-activation relieved the dependence on the upstream MAPK pathway components, 

KRAS, RAF1, and SHOC2. Critically, Mek1DD expression also bypassed the requirement 

for PREX1, placing it too upstream of Mek1 (Figures 6E and 6F). The Rac GTPases can 

induce MAPK signaling by stimulating the p21-activated kinases (PAKs), which, in turn, 

phosphorylate and activate c-Raf (King et al., 1998). Consistent with this model, Rac1G12V-

expressing cells had hyperactive PAK and MAPK signaling and knockdown of PREX1 
inhibited these pathways in wild-type SKM-1 cells (Figures 6G–6I). Together, these data 

establish PREX1 as a key input for MAPK pathway activation in Ras-driven AML cells.

Lack of Paralog Expression Explains AML-Specific Dependence on PREX1

As PREX1 is highly expressed in normal myeloid cells, we reasoned that it functions as the 

major activator of Rac signaling in AML cells, but that perhaps other GEFs promote Rac 

activity in other cancers. Consistent with this notion, all of the mutant Ras AML lines 

examined expressed PREX1, but only three of the nine non-AML lines did (Figure 7A). 

Strikingly, TIAM1, another DH-PH Rac-GEF, had the opposite expression pattern—it was 
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absent in all the AML lines but robustly expressed in all but one of the non-AML lines. 

Notably, the one line not expressing TIAM1, NU-DHL-1, expressed high levels of PREX1 
and was the only PREX1-dependent non-AML line (Figure 6B). Though PREX1 and 

TIAM1 share little sequence homology (6% amino acid identity), we posited that they might 

nonetheless be functionally interchangeable. To test this idea, we screened the focused 

library in THP-1 cells stably expressing TIAM1. As compared to the parental line, THP1-

TIAM1 cells have a reduced dependence on PREX1, which showed the greatest change in 

CS of all 132 genes screened (Figures 7B and 7C). Additionally, TIAM1 expression rescued 

the decrease in PAK signaling caused by PREX1 loss (Figure 7D). Thus, we conclude that 

Ras-driven AML cells specifically require PREX1 because it is the only active Rac-GEF 

expressed in this cancer subtype.

While PREX1 may not serve as an ideal target for pharmacological inhibition, our findings 

raise the possibility that AML and non-AML cancers driven by oncogenic Ras may be 

sensitive to inhibition of the group I PAKs (PAK1-3). Using FRAX-597, a small-molecule 

inhibitor of multiple kinases including the group I PAKs, we tested this hypothesis in two 

isogenic cell pairs with differential requirements for Ras signaling: SKM-1 cells expressing 

either Mek1DD or the control protein Rap2A, as well as CGN Ba/F3 cells cultured in the 

presence or absence of IL-3. In both cases, the cells dependent on Ras signaling were more 

sensitive to PAK inhibition than the isogenic control cells even though FRAX-597 inhibits 

many other kinases besides the PAKs (Figure 7E) (Chow et al., 2012). Collectively, these 

results suggest a model in which all Ras-driven cancers require PAK activity in order to fully 

activate MAPK signaling, with each cancer subtype activating the PAKs via distinct 

mechanisms (Figure 7F).

DISCUSSION

An Integrative Genomic Approach Reveals Oncogene Dependency

Cancer genome sequencing efforts have provided an increasingly complete catalog of the 

genes altered during tumor development (Lawrence et al., 2014). Functional studies enable a 

direct assessment of the contribution of each of these genes to cancer cell fitness (Boehm 

and Hahn, 2011; Garraway and Lander, 2013). Together, these complementary approaches 

should accelerate the identification of novel oncogenes and potential therapeutic targets. 

Some cancers are driven by rare events that are difficult to distinguish from random 

mutations and thus require functional analysis to assess the significance of an alteration 

(Berger et al., 2016; Starita et al., 2015; Tsang et al., 2016). For instance, the tiled design of 

our libraries enabled us to identify the essentiality of translocation events including a rare 

inversion involving the RAF1 kinase in OCI-AML2 cells.

However, mutational information alone cannot discriminate between oncogenes required for 

the continued growth of cancer cells from those solely involved in tumor initiation. Even for 

cells harboring activating mutations in the same oncogene, we found differences in 

essentiality (only three of four FLT3 mutant lines required FLT3). Thus, to more accurately 

guide cancer treatment, functional testing of patient tumor cells, should be considered in 

combination with sequence analysis.
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Functional Gene Network Mapping Using Correlated Gene Essentiality Analysis

The natural variability in the genetic and epigenetic makeup across human cancer cell lines 

leads to differences in gene essentiality and so provides a convenient means for defining 

functional gene networks. Even between lines of a single subtype, we found many genes 

with variable essentiality. Reasoning that genes in the same biological pathway should show 

similar patterns of essentiality, we used the CRISPR scores to cluster genes into groups with 

correlated essentiality. Interestingly, the scores of many gene pairs correlated linearly, with 

the different cell lines showing graded, rather than binary levels of requirements for the 

genes. Our analysis uncovered several classes of functional relationships including gene sets 

encoding protein complexes, metabolic pathways, and enzyme-substrate pairs and enabled 

us to determine the molecular functions of uncharacterized genes.

Analysis of other cancer types or across cancer types may reveal additional interactions and 

surveying across media conditions or in the presence of chemical compounds may also yield 

valuable insights. Moreover, we anticipate that more sophisticated analysis of our dataset 

using approaches that can detect multi-way interactions will allow for continued discovery.

With the exception of the genes involved in p53 signaling, the basis of the variable 

essentiality of all other gene clusters remains unclear. Such an understanding will be 

required in order to exploit these pathways for cancer therapy. Similar to efforts to predict 

cancer drug response, integrative approaches may help uncover biomarkers for gene 

essentiality.

Screens in Established Human AML and Engineered Mouse Cell Lines Uncover a Common 
Set of Ras Synthetic Lethal Interactions

We focused on a special case of co-essentiality: synthetic lethality with oncogenic Ras. In 

large part, our study suggests that the development of therapies that selectively impact Ras-

dependent cancer cells will require re-focusing efforts on targeting select components of the 

Ras pathway itself.

Ras, like many small GTPases, undergoes a series of post-translational modifications to 

facilitate interaction with the inner leaflet of the plasma membrane. Efforts to block this 

process have been primarily directed toward inhibition of the initial step of the pathway 

catalyzed by FTase (Cox et al., 2014). However, FTase inhibitors have been ineffective in the 

clinic as Kras and Nras can be geranylgeranylated, an alternative prenylation pathway 

(Whyte et al., 1997). Additionally, our results here and from prior screens conducted in other 

cancer subtypes indicate that FTase is required in all cells. In contrast to FTase, the enzymes 

catalyzing the latter two steps of the Ras processing pathway, Rce1 and Icmt, do display 

synthetic lethality with oncogenic Ras and may thus serve as therapeutic targets.

Our results provide further support for the central role of MAPK signaling in Ras-driven 

cancers and suggest c-Raf as a therapeutic target. The unique requirement for c-Raf, but not 

other Raf kinases, is consistent with only c-Raf being required in lung cancer models driven 

by oncogenic Ras (Blasco et al., 2011; Karreth et al., 2011).
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A mechanistic insight from our study is the critical role of the Rac/PAK signaling axis in 

promoting MAPK activity in mutant Ras cancers. Even though the Rac GTPases activate 

many downstream pathways, we found that forced expression of constitutively active Mek1 

can bypass the requirement for PREX1. The selective essentiality of PREX1 in Ras-driven 

AML, but not in the other cancer types tested, likely reflects the critical role of PREX1 in 

normal myeloid cells. In neutrophils, where PREX1 is highly expressed, host- and pathogen-

derived chemotactic factors trigger activation of the PI3-Kγ and GPCR pathways (Welch et 

al., 2002). This results in the generation of PIP3 and free Gβγ subunits which recruit PREX1 

and stimulate Rac-GEF activity. In AML cells, Gβγ and PIP3 may be similarly required to 

activate PREX1. We note that genes encoding two Gβ subunits (GNB1/2), a Gγ subunit 

(GNG5), a Gβγ-modulator (PDCL), and the catalytic and regulatory subunits of PI3-Kγ 
(PIK3CG/PIK3R5) all showed partial Ras co-dependency (Figure S5A). We hypothesize 

that Ras-driven cancers originating from other cell types rely on other Rac-GEFs, such as 

TIAM1 and VAV1, to activate PAK signaling.

Design of Synthetic Lethal Screens and sgRNA Libraries

The combination of screening approaches employed here provides a guide for the design of 

robust screens for synthetic lethal interactions. As illustrated by the case PREX1 in Ras-

driven AML, genetic interactions with oncogenes may occur in a cell context-dependent 

manner. Thus, it may be sensible to screen lines of a particular cell type or to include enough 

cell lines representing each cancer type. Additionally, screens across isogenic cell lines 

should be employed to eliminate factors that may confound analyses across genetically 

heterogeneous cancer cell lines. Here, we screened Ba/F3 cells expressing oncogenic NRAS 
in the presence and absence of IL-3. This perturbation altered oncogene dependence, but not 

proliferation rate (Figure S5C).

Microarray-based oligonucleotide synthesis enables the rapid generation of focused sgRNA 

libraries for follow-up studies. As such experiments require vastly fewer numbers of cells, 

many additional cell lines can be tested. By using expanded cell line panels representing 

more cancer types, the generality of the interactions can be assessed and with engineered 

panels of lines, epistatic relationships between hit genes defined. Moreover, it may be 

possible to conduct screens using murine cancer models and identify genes that play critical 

roles in vivo.

General Comments on Synthetic Lethality in Cancer

Synthetic lethal interactions in cancer cells can, in principle, occur between several classes 

of genes. The prototypical example is the inactivation of a so-called ‘caretaker’ gene 

involved in the maintenance of genomic stability that leads to dependence on a parallel 

maintenance pathway (Ashworth et al., 2011; Kaelin, 2005). Such interactions may arise 

between genes involved in distinct but functionally overlapping processes, as seen with the 

BRCA and PARP DNA repair pathways, or between highly related and perhaps even 

interchangeable paralogs, such as ARID1A and ARID1B (Farmer et al., 2005). However, 

this paradigm may not apply to Ras and other genes involved in signal transduction. In 

contrast to loss-of-function mutations in caretaker genes, oncogenic mutations in growth 

factor signaling pathways result in hyperactive signaling and, in most cases, render cells 
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dependent on the altered pathway (Luo et al., 2009b). Furthermore, as these mutations act in 

a dominant fashion, they are typically found in the heterozygous state, leaving the wild-type 

allele intact.

Genes and pathways that protect cancer cells from the diverse stresses associated with the 

malignant state represent a second class of potential vulnerabilities. In comparison to their 

normal counterparts, cancer cells rely to a much greater extent on such cytoprotective 

pathways as they experience elevated levels of mitotic, oxidative, proteotoxic, metabolic, 

and DNA damage-related stress (Luo et al., 2009b). While many of these stresses can be 

experimentally induced by the expression of specific oncogenes, they are almost universally 

found in established tumors regardless of genotype (Courtois-Cox et al., 2008). Thus, it is 

unclear whether these liabilities can be linked to any particular oncogene per se or if they 

arise as a secondary consequence of the increased genomic instability and mitotic index 

characteristic of all cancer cells. Indeed, chaperones, such as Hsp90, act as “genetic hubs” 

and show epistasis with hundreds of client proteins, including several oncogenic kinases 

(Whitesell and Lindquist, 2005). More comprehensive studies that compare various 

genetically defined malignant and pre-malignant cells are needed to pinpoint the specific 

features of the oncogenic state that sensitize cells to inhibition of individual stress response 

pathways. Importantly, as full inhibition of many of these pathways is likely to be lethal, 

gene knockdown approaches, such as CRISPRi, may be better suited to interrogate them 

(Gilbert et al., 2014; Horlbeck et al., 2016).

The only consistent differences in gene essentiality between the mutant and wild-type Ras 

cells in our study were in genes closely connected to Ras itself (Ras post-translational 

processing and MAPK signaling). Extensive experimental evidence in Ras-driven cell lines 

and in murine cancer models supports the importance of these pathways. Our data are in 

general agreement with findings from our correlated essentiality analysis—as with other 

pathways and complexes, cells that require Ras also require other genes that act in concert 

with Ras to promote survival and proliferation. We anticipate that screens for synthetic lethal 

partners of other driver oncogenes will uncover similar networks of ancillary genes that may 

serve as attractive targets for therapy. More broadly, through the systematic application of 

CRISPR-based screens, it should be possible to comprehensively identify the acquired 

vulnerabilities of human cancers.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-HA (clone 6E2) Cell Signaling Technology 2367

Rabbit polyclonal anti-HA Bethyl A190-208A

Rabbit monoclonal anti-FLAG (clone 
D6W5B)

Cell Signaling Technology 14793

Rabbit monoclonal anti-COX IV (clone 
3E11)

Cell Signaling Technology 4850
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REAGENT or RESOURCE SOURCE IDENTIFIER

Total OXPHOS human WB Antibody 
Cocktail

Abcam ab110411

Rabbit polyclonal anti-Raptor EMD Millipore 09-217

Rabbit monoclonal anti-UFM1 [clone 
EPR4264(2)]

Abcam ab109305

Mouse monoclonal anti-GAPDH (clone 
GT239)

GeneTex GTX627408

Rabbit monoclonal anti-PREX1 (clone 
D8O8D)

Cell Signaling Technology 13168

Mouse monoclonal anti-Sur-8 (clone D-8) Santa Cruz sc-514779

Rabbit polyclonal anti-Tiam1 (C-16) Santa Cruz sc-872

Rabbti polyclonal RagC Cell Signaling Technology 3360

Rabbit polyclonal anti-Phospho-PAK1 
(Ser144)/PAK2 (Ser141)

Cell Signaling Technology 2606

Rabbit monoclonal anti-Phospho-PAK2 
(Ser20) [clone EPR658(2)]

Abcam ab76419

Rabbit polyclonal anti-PAK2 Cell Signaling Technology 2608

Rabbit monoclonal anti-Phospho-p44/42 
MAPK (Erk1/2) (Thr202/Tyr204) (clone 
D13.14.4E)

Cell Signaling Technology 4370

Rabbit polyclonal anti-ERK1/2 p44/42 
MAPK (Erk1/2)

Cell Signaling Technology 9102

Rabbit monoclonal anti-Phospho-c-Raf 
(Ser338) (clone 56A6)

Cell Signaling Technology 9427

Rabbit polyclonal anti-c-Raf Cell Signaling Technology 9422

Rabbit monoclonal anti-Phospho-MEK1/2 
(Ser217/221) (clone 41G9)

Cell Signaling Technology 9154

Mouse monoclonal anti-MEK1 (clone 
61B12)

Cell Signaling Technology 2352

Rabbit polyclonal anti-Phospho-PAK1 
(Ser199/204)/PAK2 (Ser192/197)

Cell Signaling Technology 2605

Rabbit polyclonal anti-Phospho-PAK1 
(Thr423)/PAK2 (Thr402)

Cell Signaling Technology 2601

Rabbit monoclonal anti-S6 Kinase (clone 
49D7)

Cell Signaling Technology 2708

Mouse monoclonal anti-UFSP2 (clone G-11) Santa Cruz sc-376084

Goat polyclonal anti-GRP 94 (C-19) Santa Cruz sc-1794

Mouse monoclonal anti-FLAG (clone M2) Sigma-Aldrich F1804

Goat anti-Rabbit IgG-HRP Santa Cruz sc-2054

Goat anti-Mouse IgG-HRP Santa Cruz sc-2055

Mouse monoclonal anti-rabbit IgG 
(Conformation Specific) (clone L27A9) 
(HRP Conjugate)

Cell Signaling Technology 5127

Donkey anti-Goat IgG (H+L) Secondary 
Antibody, Alexa Fluor 488 conjugate

Thermo Fisher Scientific A-11055

Donkey anti-Mouse IgG (H+L) Secondary 
Antibody, Alexa Fluor 488 conjugate

Thermo Fisher Scientific A-21202

Donkey anti-Mouse IgG Secondary 
Antibody, Alexa Fluor 568 conjugate

Thermo Fisher Scientific A-10037
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REAGENT or RESOURCE SOURCE IDENTIFIER

Donkey anti-Rabbit IgG (H+L) Secondary 
Antibody, Alexa Fluor 568 conjugate

Thermo Fisher Scientific A-10042

Donkey anti-Mouse IgG (H+L) Secondary 
Antibody, Alexa Fluor 647 conjugate

Thermo Fisher Scientific A-31571

Chemicals, Peptides, and Recombinant Proteins

Anti-FLAG M2 Affinity Gel Sigma-Aldrich A2220

X-tremeGENE 9 DNA Transfection Reagent Roche 06365787001

TaKaRa Ex Taq DNA Polymerase TaKaRa RR001A

Cell-Tak Cell and Tissue Adhesive CORNING 354240

FLAG peptide (sequence DYKDDDDK) Biopolymers Core, Koch 
Institute

N/A

Sodium pyruvate Sigma-Aldrich 113-24-6

Human GM-CSF Miltenyi Biotec 130-093-862

Recombinant murine IL-3 PeproTech 213-13

FRAX 597 Selleckchem S7271

Ruxolitinib Selleckchem S1378

Selumetinib Selleckchem S1008

Quizartinib LC Laboratories Q-4747

Critical Commercial Assays

XF24 Extracellular Flux Analyzer Seahorse Bioscience N/A

CellTiter-Glo Luminescent Cell Viability 
Assay

Promega G7570

Active Rac1 Detection Kit Cell Signaling Technology 8815

Nucleofector Device Lonza N/A

Cell Line Nucleofector Kit V Lonza 1003

QIAamp DNA Blood Maxi Kit QIAGEN 51192

QIAamp DNA Blood Midi Kit QIAGEN 51183

Deposited Data

Cell line mutational data (Barretina et al., 2012) https://www.broadinstitute.org/ccle

Cell line mutational data (Forbes et al., 2015) http://cancer.sanger.ac.uk/cell_lines

DNA copy number data (Barretina et al., 2012) https://www.broadinstitute.org/ccle

Cell line microarray expression data (Barretina et al., 2012) https://www.broadinstitute.org/ccle

Experimental Models: Cell Lines

OCI-AML5 CCLE ACC-247

TF-1 CCLE ACC-334

697 CCLE ACC-42

HPB-ALL CCLE ACC-483

Jurkat CCLE ACC-282

KE-37 CCLE ACC-46

MOLT-16 CCLE ACC-29

RCH-ACV CCLE ACC-548
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REAGENT or RESOURCE SOURCE IDENTIFIER

SEM CCLE ACC-546

SUP-T1 CCLE ACC-140

Reh CCLE ACC-22

TALL-1 CCLE ACC-521

NALM-6 CCLE ACC-128

NB-4 CCLE ACC-207

MOLM-13 CCLE ACC-554

HEL CCLE ACC-11

PL-21 CCLE ACC-536

MV4;11 CCLE ACC-102

EOL-1 CCLE ACC-386

OCI-AML2 CCLE ACC-99

OCI-AML3 CCLE ACC-582

P31/FUJ CCLE JCRB0091

MonoMac1 CCLE ACC-252

SKM-1 CCLE ACC-547

THP-1 CCLE ACC-16

SHI-1 DSMZ ACC-645

NOMO-1 J. D. Griffin ACC-542

Ba/F3 J. D. Griffin ACC-300

KY821 JCRB JCRB0105

ML-2 DSMZ ACC-15

ML-1 R. Polakiewicz ECACC 88113007

HT CCLE ACC-567

KM-H2 CCLE ACC-8

L-428 CCLE ACC-197

MC116 CCLE ACC-82

Mino CCLE ACC-687

NU-DHL-1 CCLE ACC-583

RL CCLE ACC-613

SU-DHL-4 CCLE ACC-495

U-937 CCLE ACC-5

JJN-3 CCLE ACC-541

KMS-26 CCLE JCRB1187

KE-97 CCLE RCB1435

KMS-28BM CCLE JCRB1192

L-363 CCLE ACC-49

Recombinant DNA

pLenti-Cas9-GFP This paper Addgene 86145
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REAGENT or RESOURCE SOURCE IDENTIFIER

LentiCRISPR-sgC17orf89-1 This paper Addgene 86137

LentiCRISPR-sgC17orf89-3 This paper Addgene 86136

LentiCRISPR-sgC17orf89-2 This paper Addgene 86135

LentiCRISPR-sgUFSP2 This paper Addgene 86134

LentiCRISPR-sgUFM1 This paper Addgene 86133

LentiCRISPR-sgUBA5 This paper Addgene 86132

LentiCRISPR-sgC1orf27-2 This paper Addgene 86131

LentiCRISPR-sgC1orf27-1 This paper Addgene 86130

LentiCRISPR-sgSHOC2-2 This paper Addgene 86129

LentiCRISPR-sgSHOC2-1 This paper Addgene 86128

LentiCRISPR-sgPREX1 This paper Addgene 86127

lentiCRISPR-AAVS1 sgRNA (Wang et al., 2015) Addgene 70661

pMXs3-NRAS G13D This paper Addgene 86144

pMXs3-TIAM1 This paper Addgene 86143

pMXs2-MEK1 DD This paper Addgene 86142

pMXs2-MEK1 This paper Addgene 86141

pMXs2-RAP2A-GFP This paper Addgene 86140

pMXs2-RAC1 G12V This paper Addgene 86139

pMXs2-RAC1 This paper Addgene 86138

pMXs-C17orf89-FLAG This paper Addgene 86126

pMXs-NDUFAF5-HA This paper Addgene 86125

pMXs-RAP2A-GFP This paper Addgene 86124

pMXs-UFSP2-FLAG This paper Addgene 86123

pMXs-HA-C1orf27 This paper Addgene 86122

pRK5-HA-metap2 (Chantranupong et al., 2016) N/A

Genome-wide human sgRNA library This paper and (Wang et al., 
2015)

N/A

Genome-wide murine sgRNA library This paper N/A

Focused human sgRNA library This paper N/A

Sequence-Based Reagents

Primers for Illumina sequencing This paper See the STAR Methods Genome-
wide CRISPR screening

Primers for sgRNA quantification This paper See the STAR Methods Genome-
wide CRISPR screening

Primers for genotyping KRAS This paper See the STAR Methods

Sanger sequencing

Primers for genotyping NRAS This paper See the STAR Methods

Sanger sequencing

Individual sgRNA target sequences This paper See the STAR Methods Vector 
construction

Genome-wide human sgRNA library This paper and Wang et al., 
2015

See Table S2
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REAGENT or RESOURCE SOURCE IDENTIFIER

Genome-wide murine sgRNA library This paper See Table S4

Focused human sgRNA library This paper See Table S7

Software and Algorithms

TopHat version 2.0.13 (Trapnell et al., 2012) http://cole-trapnell-lab.github.io/cufflinks

R version 2.15.1 The R Project https://www.r-project.org/

GSEA (Subramanian et al., 2005) http://software.broadinstitute.org/gsea/

Prism version 6.0.1 GraphPad https://www.graphpad.com

python version 2.6.8 Python software foundation https://www.python.org/

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information and resources may be directed to Lead Contact David M. 

Sabatini (sabatini@wi.mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Genomic Annotations—ML-1 cells were a gift from R. Polakiewicz of 

Cell Signaling Technology. Ba/F3 and Nomo-1 cells were a gift from J. D. Griffin of the 

Dana Farber Cancer Institute. ML-2 and SHI-1 cells were obtained from the DSMZ cell 

bank; KY-821 cells from the JCRB cell bank; and all other lines from the Cancer Cell Line 

Encyclopedia (CCLE). Genomic information was obtained from the CCLE and from the 

canSAR database. All cell lines obtained from the CCLE, DSMZ and JCRB were subjected 

to STR profiling and mycoplasma testing.

Cell Culture Conditions—All cells were cultured in IMDM (Life Technologies) and 

supplemented with 20% Inactivated Fetal Calf Serum (Sigma), 5 mM glutamine, and 

penicillin/streptomycin. TF-1 and OCI-AML5 cells were supplemented with 5 ng/ml human 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (Miltenyi Biotec). Where 

indicated, Ba/F3 cells were supplemented with 1 ng/ml murine interleukin-3 (IL-3) 

(PeproTech). For pyruvate supplementation experiments, Nomo-1 cells were cultured in 

RPMI (US Biologicals) supplemented with 10% Inactivated Fetal Calf Serum (Sigma), 5 

mM glutamine, and penicillin/streptomycin in the presence and absence of 1 mM sodium 

pyruvate (Sigma).

METHOD DETAILS

Virus Production and Transduction—Pseudotyped virus was produced by co-

transfecting the transfer vector of interest with the VSV-G envelope plasmid and the Delta-

Vpr (for lentivirus production) or Gag-Pol (for retrovirus production) packaging plasmids 

into HEK293T cells using XTremeGene 9 Transfection Reagent (Roche). Culture media was 

changed 12 hr after transfection and the virus-containing supernatant was collected 72 hr 

after transfection and passed through a 0.45 μm filter to eliminate cells. Target cells in 6-well 

tissue culture plates were infected in media containing 8 μg/mL of polybrene (EMD 

Millipore) by centrifugation at 2220 RPM for 45 min. 24 hr after infection, cells were 
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pelleted to remove virus and re-plated in fresh media. When appropriate, cells were 

subsequently selected with antibiotics.

Vector Construction—The retroviral pMXs transfer vector was used to generate cell 

lines stably expressing cDNAs of interest. Several versions of the pMXs backbone vector 

containing different selectable markers were generated for different experiments. For studies 

related to C1orf27 and C17orf89, FLAG-tagged RAP2A-GFP, UFSP2, and C17orf89 and 

HA-tagged C1orf27 and NDUFAF5 were cloned into a vector containing blasticidin 

deaminase via Gibson Assembly (Gibson et al., 2009). To generate isogenic SKM-1 cell 

lines, RAP2A, Rac1WT, Rac1G12V, Mek1WT (encoded by MAP2K1), and Mek1DD 

(MAP2K1S218D;S221D) were cloned into a vector containing blasticidin deaminase and 

TagRFP, pMXs2, via Gibson Assembly. To generate isogenic Ba/F3 and THP-1 cell lines, 

NRASG13D and TIAM1 were cloned into a vector containing turboRFP, pMXs3, via Gibson 

Assembly. To generate the Cas9-GFP expressing lentiviral construct, a version of 

lentiCRISPR-v1 in which the puromycin N-acetyltransferase ORF was replaced with eGFP.

Individual sgRNA constructs targeting were cloned into lentiCRISPR-v1 (sequences 

provided below) as described previously (Cong et al., 2013).

sgUFM1: TCACGCTGACGTCGGACCCA

sgUBA5: AAGCAGCAGAACATACTCTG

sgUFSP2: CCAGCTGCAGGCCTATAGGA

sgC1orf27-1: GAGATTGTGGAATTTCACAG

sgC1orf27-2: CACAACATTACAGTGGATCC

sgC17orf89-1: CACGCACCTGCCGTACGCCG

sgC17orf89-2: TGTCGGCTAACGGAGCGGTG

sgC17orf89-3: CGCGGGAGTTCGAGGCCCTG

sgSHOC2-1: GCAGTCCCTCCCAGCAGAGG

sgSHOC2-2: CAGTTGACCACTCTTCCCAG

sgPREX1: GGGAGACTGCCAGACTCGGG

sgAAVS1: GGGGCCACTAGGGACAGGAT

Generation of Isogenic Cell Lines for CRISPR Screening—For the genome-wide 

isogenic screens using the murine Ba/F3 cell line, cells were transduced with a lentiviral 

construct expressing Cas9-2A-GFP. Single, viable cells were sorted into 96-well plates by 

fluorescence-activated cell sorting (FACS). A sub-clone expressing high levels of GFP, 

termed Cas9-GFP or Ba/F3 CG, was expanded, transduced with a retroviral construct 

expressing NRASG13D-IRES-RFP, and subjected to FACS for RFP positive cells. During 

this procedure, cells were continuously passaged in the presence of IL-3 and maintained at a 

concentration of less than 100,000 per mL to ensure that cells did not become spontaneously 

cytokine-independent. To obtain cytokine-independent cells, IL-3 was withdrawn from the 

culture media, and, after 1 week, the surviving cells were subjected to a second round of 
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FACS for RFP positive cells. The isolated cell population, termed Cas9-GFP NRASG13D or 

CGN Ba/F3, was subsequently maintained in the absence of IL-3.

For screens using the validation library, SKM-1 cells were transduced with retroviral 

constructs expressing Rap2A, Rac1, Rac1G12V, Mek1 (also known as MAP2K1), and 

Mek1DD; selected with and continuously cultured in blasticidin; and subjected to two rounds 

of FACS for RFP positive cells. THP-1 cells were transduced with a retroviral construct 

expressing TIAM1 and subjected to two rounds of FACS for RFP positive cells.

Genome-wide CRISPR Screening—Genome-wide screens for all of the human and 

mouse cell lines was performed as described in (Wang et al., 2015) with minor modifications 

and the entire screening procedure was performed twice in the human NB4 and mouse 

Ba/F3 cells to assess reproducibility. Briefly, for each line, 240 million target cells were 

transduced with the viral pool to achieve an average 1000-fold coverage of the library after 

selection. After 72 hr, 200 million cells were selected with puromycin. An initial pool of 80 

million cells was harvested for genomic DNA extraction from all of the cell lines except for 

THP-1 and TF-1. The remaining cells were passaged every 3 days, and after 14 doublings, a 

final pool of 100 million cells was harvested for genomic DNA extraction using the QIAamp 

DNA Blood Maxi Kit (QIAGEN) sgRNA inserts were PCR amplified using Ex Taq DNA 

Polymerase (Takara) from 50–75 million genome equivalents of DNA from each initial and 

final sample, achieving an average coverage of ~275–400x of the sgRNA library. The 

resultant PCR products were purified and sequenced on a HiSeq 2500 (Illumina) (primer 

sequences provided below) to monitor the change in the abundance of each sgRNA between 

the initial and final cell populations.

Primer sequences for sgRNA quantification

Forward:

AATGATACGGCGACCACCGAGATCTACACGAATACTGCCATTTGTCTCAAGA

TCTA

Reverse:

CAAGCAGAAGACGGCATACGAGATCnnnnnnTTTCTTGGGTAGTTTGCAGTTT

T

(nnnnnn denotes the sample barcode)

Illumina sequencing primer

CGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATT

TCTAGCTCTAAAAC

Illumina indexing primer

TTTCAAGTTACGGTAAGCATATGATAGTCCATTTTAAAACATAATTTTAAAAC

TGCAAACTACCCAAGAAA
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Genome-wide sgRNA Library Construction—For genome-wide screens in the human 

AML cell lines, the human sgRNA library generated in (Wang et al., 2015) was used. 

Notably, the gene-targeting sgRNA sequences in our library were optimized for high 

cleavage activity to enable more sensitive and specific detection of cell-essential genes 

(Wang et al., 2015). For more complete coverage of protein-coding genes, a sub-library 

containing 5,401 additional sgRNAs (comprising 499 intergenic control sgRNAs and 4,902 

sgRNAs targeting 497 additional protein-coding genes) were designed, synthesized, and 

cloned into lentiCRISPRv1. In total, the human sgRNA library contained 187,536 constructs 

targeting 18,543 protein-coding genes and 1,504 intergenic and non-targeting control 

sgRNAs.

Using similar guidelines for the design of highly specific and active sgRNAs, a genome-

wide murine library containing 188,509 sgRNAs (comprising 199 intergenic control 

sgRNAs and 188,310 sgRNAs targeting 18,986 protein-coding genes) was designed, 

synthesized, and cloned into pLenti-sgRNA, a lentiviral sgRNA expression vector that does 

not contain Cas9.

Secondary CRISPR Screening—A pooled library containing 6,661 sgRNAs 

(comprising 499 intergenic control sgRNAs and 6,162 sgRNAs targeting 132 control and 

candidate Ras synthetic lethal genes) was designed and cloned into lentiCRISPR-v1. When 

possible, up to 50 sgRNAs were designed for each gene. The validation screening procedure 

was similar to genome-wide screens with minor modifications. 10 million cells were used 

for screening and harvested during the initial and final collections. Genomic DNA was 

extracted using QIAamp DNA Blood Midi Kit (QIAGEN) and 6 million genomic 

equivalents were processed for PCR.

Antibodies—The following antibodies were used for immunoblotting: HA-Tag (6E2) 

Mouse (Cat#2367), DYKDDDDK Tag (D6W5B) (Cat#14793), PREX1 (D8O8D) 

(Cat#13168), RagC (Cat#3360), p-PAK1 (S144)/PAK2 (S141) (Cat#2606), PAK2 

(Cat#2608), p-MAPK (Erk1/2) (T202/Y204) (Cat#4370), MAPK (Erk1/2) (Cat#9102), p-c-

Raf (S338) (56A6) (Cat#9427), c-Raf (Cat#9422), p-MEK1/2 (S217/221) (41G9) 

(Cat#9154), MEK1 (61B12) (Cat#2352), p-PAK1 (S199/204)/PAK2 (S192/197) (Cat#2605), 

p-PAK1 (T423)/PAK2 (T402) (Cat#2601), p70 S6 Kinase (49D7) (Cat#2708), Mouse Anti-

rabbit IgG (Conformation Specific) (L27A9) mAb (HRP Conjugate) (Cat#5127) from Cell 

Signaling Technology. Goat anti-rabbit IgG-HRP (sc-2054), Goat anti-mouse IgG-HRP 

(sc-2055), Sur-8 (D-8) (sc-514779), Tiam1 (C-16) (sc-872) from Santa Cruz; HA Tag 

(A190-208A) from Bethyl, FLAG M2 antibody (F1804) from Sigma-Aldrich; Total 

OXPHOS human WB Antibody Cocktail (ab110411), UFM1 [EPR4264(2)] (ab109305), p-

PAK2 (S20) [EPR658(2)] (ab76419) from Abcam; Raptor (09-217) from EMD Millipore,; 

and GAPDH (GT239) from GeneTex.

The following antibodies were used for immunofluorescence: UFSP2 (G-11) and GRP94 

(C-19) from Santa Cruz; COX IV (3E11), HA-Tag (6E2), FLAG-Tag (D6W5B) from CST; 

FLAG-Tag (M2) from Sigma; and Donkey anti-Goat IgG (H+L) Secondary Antibody Alexa 

Fluor 488 conjugate, Donkey anti-Mouse IgG (H+L) Secondary Antibody Alexa Fluor 488 

conjugate, Donkey anti-Mouse IgG Secondary Antibody Alexa Fluor 568 conjugate, Donkey 
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anti-Rabbit IgG (H+L) Secondary Antibody Alexa Fluor 568 conjugate, Donkey anti-Mouse 

IgG (H+L) Secondary Antibody Alexa Fluor 647 conjugate from Thermo Fisher.

Cell Lysis and Immunoblotting—Cells were rinsed twice with ice-cold PBS and lysed 

with Triton lysis buffer (1% Triton X-100, 20 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1 mM 

EDTA, 1 PhosSTOP Phosphatase Inhibitor Cocktail tablet per 25 mL buffer [Roche], 1 

cOmplete, EDTA-free Protease Inhibitor Cocktail Tablet per 25 mL buffer [Roche]). The 

cell lysates were cleared by centrifugation at 13,000 rpm at 4°C in a microcentrifuge for 10 

min and quantified for protein amount using BCA reagent (Thermo Scientific). Protein 

samples were normalized for protein content, denatured by the addition of Laemmli buffer 

and boiling for 5 min, resolved by SDS-PAGE, and transferred to a polyvinylidene difluoride 

membrane (Millipore). Immunoblots were processed and analyzed according to standard 

procedures and analyzed using chemiluminescence.

Immunoprecipitation Studies—5 million HEK293T cells stably expressing FLAG-

tagged cDNAs were plated in 10 cm culture dishes. For co-immunoprecipitation (co-IP) 

studies, cells were transfected with 3 μg of the indicated plasmids using XTremeGene 9 

Transfection Reagent (Roche) 24 hr after seeding and the cell culture media was changed the 

following day. 72 hr after seeding, cell lysates were prepared as described above. The 

FLAG-M2 affinity gel (Sigma) was washed three times with lysis buffer. 40 μl of a 50/50 

slurry of the FLAG-M2 affinity gel was then added to clarified cell lysates and incubated 

with rotation for 90 min at 4°C. Following IP, the beads were washed three times with lysis 

buffer. For co-IP experiments, immunoprecipitated proteins were denatured by the addition 

of 40 μl of Laemmli buffer and boiling for 5 min and resolved by SDS-PAGE. For FLAG-

C17orf89 mass spectrometry experiments, immunoprecipitated proteins were eluted using 

the FLAG peptide, resolved rom the FLAG-M2 affinity gel, resolved on 4%–12% NuPage 

gels (Invitrogen), and stained with simply blue stain (Invitrogen). Each gel lane was sliced 

into 10–12 pieces and the proteins in each gel slice were digested overnight with trypsin. 

The resulting digests were analyzed by mass spectrometry.

Immunofluorescence—100 thousand HEK293T cells were seeded on 35 mm 

fibronectin-coated glass-bottom dishes (MatTek). 24 hr later, cells were rinsed with PBS, 

fixed with 4% paraformaldehyde in PBS for 15 min, rinsed with PBS again, permeabilized 

with 0.4% Triton X-100 in PBS for 12 min, rinsed with PBS again, and blocked with 10% 

horse serum (HS) for 20 min. Dishes were then incubated with primary antibody in 10% HS 

for 1 hr at RT, rinsed three times with PBS, and incubated with a fluorescent secondary 

antibody diluted 1:400 in 10% HS for 2 hr at RT in the dark. Finally, cells were rinsed three 

times with PBS and on the second wash were incubated with DAPI for 20 min. Dishes were 

imaged on an Axio Observer.Z1 inverted epifluorescence microscope (Zeiss).

Seahorse Analysis—Oxygen consumption of intact cells was measured using an XF24 

Extracellular Flux Analyzer (Seahorse Bioscience). XF24 Cell Culture Microplates 

(Seahorse Bioscience) were coated with Cell-Tak Cell and Tissue Adhesive (Corning), and 

seeded with 180 thousand Nomo-1 cells (100 μl) per well. The plates were centrifuged to let 
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cells adhere to the bottom, placed in an incubator not supplemented with CO2 for 30 min, 

and subsequently analyzed on the XF24 Analyzer.

siRNA Experiments—Nucleofection of siRNAs was performed using the Cell Line 

Nucleofector Kit V on a Nucleofector Device (Lonza) according to the manufacturer’s 

instructions. Briefly, 5 million SKM-1 cells were pelleted and resuspended in 100 μL 

Nucleofector solution and 2 μL of either the ON-TARGETplus PREX1 siRNA SMARTpool 

or the siGENOME Non-Targeting siRNA Pool #1 (100 μM) and trans-fected using the 

V-001 program. Cells were then resuspended in pre-warmed IMDM supplemented with 10% 

IFS to allow for recovery and the same transfection procedure was repeated 24 hr later. 96 hr 

after the initial transfection, cells were lysed and processed for either immunoblotting as 

described above or with the Active Rac1 Detection Kit (Cell Signaling Technology) 

according to the manufacturer’s instructions to determine the cellular levels of active, GTP-

bound Rac1.

RNA Sequencing—Transcriptomic analysis of PL-21 and OCI-AML2 cells was 

performed using a strand-specific RNA sequencing protocol described previously. Briefly, 

total RNA was extracted using the RNeasy Mini kit (QIAGEN). 5 μg of polyA-selected 

RNA was fragmented and dephosphorylated after which an ssRNA adaptor was then ligated. 

Reverse transcription (RT) was performed using a primer complementary to the RNA 

adaptor after which a DNA adaptor was ligated onto the 3′ end of the resulting cDNA 

product. The library was then PCR amplified, cleaned, quantified using a TapeStation 

(Agilent) and sequenced on a HiSeq 2500 (Illumina). Result reads were then mapped to the 

reference human genome (hg19) using TopHat.

Short-Term Proliferation Assays—ATP-based measurements of cellular viability were 

performed by plating cells in 200 μL of media in 96-well plates. The number of cells and 

biological replicates seeded varied depending on the cell line and the duration of the 

experiment. At the indicated times, 40 μL of CellTiter-Glo reagent (Promega) was added to 

each well, mixed for 5 min, after which the luminescence was measured on the SpectraMax 

M5 Luminometer (Molecular Devices). For the drug treatment experiments, FRAX-597, 

Ruxolitinib, and Selumetinib were obtained from Selleckchem and Quizartinib from LC 

Laboratories.

Sanger Sequencing—For a subset of the mutant Ras cell lines used in our study, KRAS 
and NRAS were subjected to sequencing analysis. Briefly, genomic DNA was extracted and 

amplified via PCR (primer sequences listed below) to interrogate hotspots in both genes. 

The PCR products were then purified and sequenced using the Sanger method.

For residues G12, G13, and A18:

KRAS1 forward: AGGCCTGCTGAAAATGACTGAA

KRAS1 reverse: AAAGAATGGTCCTGCACCAG

For residue Q61:
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KRAS2 forward: CTCAGGATTCCTACAGGAAGCA

KRAS2 reverse: CACCTATAATGGTGAATATCTTCAAAT

For residues K117 and A146:

KRAS3 forward: GGACTCTGAAGATGTACCTATGG

KRAS3 reverse: TCAGTGTTACTTACCTGTCTTGT

For residues G12 and G13:

NRAS1 forward: ACAGGTTCTTGCTGGTGTGA

NRAS1 reverse: CACTGGGCCTCACCTCTATG

For residue Q61:

NRAS2 forward: GTGGTTATAGATGGTGAAACCTGT

NRAS2 reverse: TGGCAAATACACAGAGGAAGC

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide CRISPR Screening—Sequencing reads were aligned to the sgRNA 

library and the abundance of each sgRNA was calculated. A small number of sgRNAs in 

both the human and mouse libraries have identical target sequences because they target 

multiple members of the same highly redundant gene family. Reads mapping to these 

sequences are assigned to all matching sgRNAs. As the human sgRNA library is comprised 

of three separate DNA plasmid sub-pools (due to limitations of microarray-based sgRNA 

synthesis), the counts of the sgRNA within each sub-pool are quantile normalized against 

each other for each of the initial and final AML samples. The sgRNA counts from all of the 

initial cell populations of the AML lines and of the two replicate initial Ba/F3 cell 

populations were combined to generate the human and mouse initial reference datasets, 

respectively. For each initial reference dataset, sgRNAs with less than 50 counts were 

removed from downstream analyses. The log2 fold-change in abundance of each sgRNA was 

calculated for final population samples for each of the cell lines after adding a count of one 

as a pseudocount. Gene-based CRISPR scores (CS) were defined as the average log2 fold-

change in the abundance of all sgRNAs targeting a given gene between the initial and final 

cell populations and calculated for all screens. The CS reported for the NB4 cell line and the 

isogenic Ba/F3 experiments was the average of two independent replicate experiments.

Secondary CRISPR Screening—CRISPR gene scores were calculated as with the 

genome-wide screens with slight modifications. sgRNAs with less than 10,00 counts in the 

initial dataset were removed from the downstream analysis and a pseudocount of 10 was 

added prior to the log2 fold-change calculation. Lastly, CRISPR scores were quantile 

normalized across of all the cell lines screened.

Comparative Essentiality Testing—To compare human gene essentiality with yeast 

gene essentiality 1-to-1 human-yeast homologs mappings were obtained from the Ensembl 

Gene release 79 database. Human genes common to the selected genome-wide CRISPR 

screen datasets were used for comparison. Each dataset was ranked by their respective 

scores and used to predict the essentiality of yeast homologs (Giaever et al., 2002). The 

sensitivity and specificity of these predictions were analyzed using receiver operator 
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characteristic (ROC) curves and the area under the ROC curve was used as the performance 

metric.

Copy Number Peak Analysis—The sliding window score (SWS) for a given gene in a 

given cell line was defined as the number of nearby genes with a CS in the lowest 3% of all 

genes in that cell line. For each gene, a window of the 20 nearest ‘upstream’ and 20 nearest 

‘downstream’ flanking genes was chosen for analysis. As some genomic regions contain 

many bona fide essential genes (e.g., histone gene clusters), genes essential in all lines were 

removed prior to the SWS calculation. For this purpose, the average CS of each gene across 

all cell lines was calculated and genes in the lowest 15% were removed. For each of the 

remaining genes, the SWS was calculated in each cell line. Genes with SWS > 12 were 

designated as high SWS genes and removed from the correlated gene essentiality analysis.

Correlated Gene Essentiality Analysis—To maximize the likelihood of identifying 

biologically meaningful relationship between genes, (1) genes essential in most of the cell 

lines, (2) genes only essential in a single line or which display erythroid-specific essentiality 

and (3) genes with low variability in CS across the 14 cell lines were removed from the 

analysis. For (1), genes for which the second lowest CS was less than −1 were removed. For 

(2), to assess if a gene was selectively essential in any single cell line, pairwise Pearson’s 

correlation coefficients were calculated between the CS profile of each gene across the 14 

cell lines and a 14×14 identity matrix. To assess if a gene was selectively essential in the two 

erythroid lines, a Pearson’s correlation coefficient was calculated between the CS profile of 

each gene and a vector containing 14 binary variables in which the two variables 

corresponding to the erythroid lines are set to ‘1’ with the remaining set to ‘0’. If the 

maximum absolute value of any of these coefficients was greater than 0.8, the gene was 

removed. For (3), the variance of the CS profile each gene across the 14 cell lines was 

obtained. The top 2,000 genes showing the highest variance were included in the correlated 

essentiality analysis. Select sets of genes with high correlation were highlighted and/or 

chosen for follow-up validation.

DATA AND SOFTWARE AVAILABILITY

Data Resources—Data resources can be found in Tables S3, S5, and S8. Additional 

sgRNA-level data and custom scripts for analysis of genome-wide screens are available at: 

http://sabatinilab.wi.mit.edu/wang/2017/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CRISPR-based screens identify essential genes in 14 human AML cell lines

• Analysis of correlated gene essentiality reveals functional gene networks

• Two independent approaches uncover a restricted set of Ras synthetic lethal 

interactions

• PREX1 and the Rac pathway are critical regulators of MAPK pathway 

activation
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Figure 1. Genome-wide CRISPR Screens for Cell-Essential Genes
(A) Pooled CRISPR-based screening strategy.

(B) CS correlation between cell lines and replicate screens of NB4.

(C) Common cell-essential genes are involved in fundamental biological processes. Gene set 

enrichment analysis was performed on genes ranked by average CS.

(D–F) SWS analysis. (D) High SWS peaks in HEL that (E) correspond to regions of 

genomic amplification. (F) Contiguous region of low CS genes reside in amplicon on 

chromosome 9p24 containing the JAK2 oncogene.

See also Figure S1 and Tables S1, S2, S3.
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Figure 2. Correlated Gene Essentiality across Cell Lines Uncovers Functional Gene 
Relationships
(A) Strategy for identifying functionally related sets of genes.

(B–F) Correlated essentiality of genes encoding (B) obligate heterodimers, (C) members of 

complexes in the mTOR pathway, (D) components of the Fanconi anemia DNA repair 

pathway, (E) enzymes catalyzing successive metabolic reactions, and (F) negative regulators 

of p53 that are negatively correlated with TP53 essentiality. r, Pearson’s correlation 

coefficient.

(G) Top: FURIN protease shows correlated essentiality with its substrate IGF1R and the 

IRS2 signaling adaptor. Bottom: the transcription factor Nrf-1 (encoded by NFE2L1) shows 

correlated essentiality with the NGLY1 deglycosylase and DDI2 peptidase.
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(H) Correlated essentiality of two sets of genes with no known relationship.

See also Figure S2 and Tables S1, S2, S3, S6, S7, and S8.
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Figure 3. Correlated Essentiality Analysis Reveals Function of Two Uncharacterized Genes
(A) Correlated essentiality of C1orf27 with members of the UFMylation pathway.

(B) UFM1 levels correlate with C1orf27 essentiality.

(C) Recombinant C1orf27 and UFSP2 interact. Rap2A and metap2 served as control bait 

and prey proteins. s.e., short exposure. l.e., long exposure.

(D) Micrograph of a HEK293T cell stably expressing FLAG-UFSP2 and HA-C1orf27. 

GRP94 is an ER marker.

(E) C1orf27 is required for the proper localization of UFSP2 in HEK293T cells.

(F) C1orf27 loss results in accumulation of UFMylated proteins. GAPDH served as a 

loading control.

(G) Correlated essentiality of C17orf89 with members of the OXPHOS pathway.

(H) Micrograph of a HEK293T cell stably expressing FLAG-C17orf89. COX IV is a 

mitochondrial marker.
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(I) Recombinant C17orf89 and NDUFAF5 interact. *, non-specific band.

(J and K) C17orf89 loss (J) destabilizes mitochondrial complex I and (K) reduces oxygen 

consumption. Raptor served as a loading control. Error bars represent SD from four replicate 

wells.

Scale bar, 5 μm.

See also Figure S3 and Tables S1, S2, S3.
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Figure 4. Identification of Driver Oncogenes via an Integrative Genomic Approach
(A) Genomic information and gene essentiality data identify driver oncogenes. JAK2 is a 

known driver in HEL cells, but resides in an amplicon and cannot be assessed in our screen.

(B) PDGFRA and RAF1 participate in oncogenic gene fusions. Only gene-fusion-targeting 

sgRNAs are depleted.

(C) RNA sequencing of OCI-AML2 pinpoints a discontinuity in coverage between exons 4 

and 5 of RAF1. PL-21 served as a control.

(D) Immunoblotting using an antibody against the C terminus of c-Raf identifies a 90-kDa 

protein in OCI-AML2. Raptor served as a loading control.

See also Figure S4 and Tables S1, S2, S3.
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Figure 5. Two Independent Screening Approaches Identify Common Synthetic Lethal 
Interactions with Oncogenic Ras
(A) Left: differential gene essentiality analysis of 12 cytokine-independent AML cell lines. 

The three mutant NRAS and three mutant KRAS cell lines are dependent on the mutated 

Ras isoform. The open circle in RAF1 CS plot represents OCI-AML2. Right: Ba/F3 cells 

were transduced with (C)as9-(G)FP and (N)RASG13D to generate the CGN Ba/F3 line. CGN 

cells do not rely on JAK/STAT signaling and are conditionally dependent on the Ras 

pathway as assessed by sensitivity to the JAK and MEK inhibitors, ruxolitinib, and 

selumetinib. Comparisons between CGN cells cultured in the presence and absence of IL-3 

reveals synthetic lethal interactions with oncogenic Ras. Error bars represent SD from six 

replicate wells.

(B) SHOC2 loss reduced MAPK pathway activity in KRAS mutant SKM-1 cells, but not 

RAF1 mutant OCI-AML2 cells. GAPDH served as a loading control.
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(C) Ras synthetic lethal gene candidates converged on pathways functioning up- and 

downstream of Ras.

See also Figure S5 and Tables S1, S2, S3, S4, and S5.
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Figure 6. MAPK Pathway Activation Requires PREX1 in Mutant Ras AML Cells
(A) PREX1 is differentially essential between human AML cell lines with mutant and wild-

type Ras.

(B) Focused library screens in 42 human hematopoietic cancer cell lines. The mutant Ras, 

non-AML cell line in the PREX1 CS plot represented by the open circle is NU-DHL-1 (see 

Figure 7A). *p < 0.05, Welch’s t test.

(C–F) Focused library screens in SKM-1 cells stably expressing (C and D) wild-type and 

constitutively active Rac1 (Rac1G12V) (E and F), wild-type, constitutively active Mek1 

(Mek1DD), and the parental SKM-1 line.

(G) Mek1 activation increases phospho-Erk1/2 levels. Rac1 activation results in increased 

phospho-PAK levels and MAPK pathway activity. SKM-1 Rap2A served as a negative 

control. Raptor and S6K1 were used as loading controls.

(H and I) PREX1 knockdown reduces (H) active Rac1, (I) phospho-PAK, and MAPK 

pathway activity. Raptor and GAPDH served as loading controls. s.e., short exposure. l.e., 

long exposure.

See also Figure S6 and Tables S1, S2, S3, S6, S7, and S8.
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Figure 7. Lack of Paralog Expression Explains PREX1-Dependence in AML
(A) Analysis of PREX1 and TIAM1 expression. RagC was used as a loading control.

(B) Focused library screens in wild-type and TIAM1-overexpressing THP-1 cells.

(C) CRISPR scores from THP-1 TIAM1 cells are compared with those of the parental 

THP-1 cells to calculate the differential CS.

(D) TIAM1 rescues sgPREX1-mediated inhibition of PAK signaling in THP-1 cells. 

GAPDH served as a loading control.

(E) Treatment of isogenic SKM-1 and Ba/F3 cell line pairs with a group I PAK inhibitor 

FRAX-597. Error bars represent SD from ten replicate wells. *p < 0.05, Welch’s t test.

(F) Proposed model of cell-type-specific PREX1 dependence.

SE, short exposure; LE, long exposure.

See also Tables S6, S7, and S8.
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