
Purdue University
Purdue e-Pubs

Birck and NCN Publications Birck Nanotechnology Center

6-3-2013

Existence of negative differential thermal
conductance in one-dimensional diffusive thermal
transport
Jiuning Hu
Birck Nanotechnology Center, Purdue University, hu49@purdue.edu

Yong P. Chen
Birck Nanotechnology Center, Purdue University, yongchen@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub

Part of the Nanoscience and Nanotechnology Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Hu, Jiuning and Chen, Yong P., "Existence of negative differential thermal conductance in one-dimensional diffusive thermal
transport" (2013). Birck and NCN Publications. Paper 1415.
http://dx.doi.org/10.1103/PhysRevE.87.062104

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanopub?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nano?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanopub?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1415&utm_medium=PDF&utm_campaign=PDFCoverPages


PHYSICAL REVIEW E 87, 062104 (2013)

Existence of negative differential thermal conductance in one-dimensional
diffusive thermal transport
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We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the
Fourier’s law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end
is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of
junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient
condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction.
We show that under certain circumstances we even could have infinite (negative or positive) differential thermal
conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based
devices, such as thermal amplifiers, oscillators, and logic devices.

DOI: 10.1103/PhysRevE.87.062104 PACS number(s): 44.10.+i, 44.05.+e, 05.60.−k

Introduction. In recent years, nonlinear thermal transport,
particularly in low-dimensional systems, is of significant
interest from both fundamental and practical perspectives
[1,2]. For example, thermal rectification has been theoretically
and experimentally studied in many nanostructures [3–11] and
heterogeneous bulk materials [12–14]. Negative differential
thermal conductance (NDTC), an unusual thermal transport
phenomenon where the heat current across a thermal conductor
decreases when the temperature bias increases, is an essential
element for the construction of thermal transistors [15] and
thermal logic [16] and is shown to exist in many nonlinear
one-dimensional (1D) systems [9,11,15,17–24] and vacuum
gaps [25]. Many mechanisms such as nonlinear interactions
[26], molecular anharmonicity [11,21,22,27], interplay be-
tween the thermal driving force and the thermal (boundary)
conductance [17,18,20,23], thermal interfaces [15,17,19], and
others [25] have been proposed to explain the existence of
NDTC. Interestingly, several numerical studies [18–20,23]
have suggested that NDTC may vanish as the system length
becomes large (approaching diffusive thermal transport).
However, it has not been definitely answered whether NDTC
universally vanishes for diffusive thermal transport. Besides,
the role played by thermal interfaces in NDTC has not been
well studied. Here, we provide a generic and analytic study of
these issues in 1D diffusive thermal transport described by the
Fourier’s law. We prove that NDTC cannot exist when the tem-
perature at one end is fixed and there are no abrupt junctions.
However, we show that NDTC in this case is still possible
if a junction with temperature-dependent thermal contact
resistance (TCR) is introduced. Unlike previous theories and
simulations [9,11,15,17–24] that dealt with specific toy models
that are often difficult to access experimentally, our predictions
provide a generic way toward building NDTC-based devices.

We consider a general 1D system in the diffusive thermal
transport regime whose thermal conductivity κ(x,T ) is a
function of the coordinate x and the local temperature T (x).

*hu49@purdue.edu

The position dependence of the thermal conductivity κ(x,T )
is explicitly expressed, since the system we consider can have
a spatial dependence of structure or composition (e.g., strain
or mass gradient). This phenomenological description is valid
as long as the mean free path (MFP) of heat carriers is much
smaller than the size of the system, where the microscopic
details are unimportant. This approach generates analytic
results regarding the existence of NDTC, and it is instructive
in system design to pursue the applications of NDTC.

For a finite 1D system that lies in the coordinate range
[xL,xR] (Fig. 1), the local heat current q(x) can be calculated
from the Fourier’s law:

q(x) = −κ(x,T )
dT

dx
. (1)

For thermal transport without heat sources or sinks, the heat
current is conserved and the steady-state thermal transport
equation reads

d

dx

[
κ(x,T )

dT

dx

]
= 0. (2)

Once the temperature at two ends of the system are given [28],
i.e.,

T (xL(R)) = T L(R), (3)

the temperature profile T (x) is uniquely [29] determined by
Eq. (2) and the boundary conditions Eq. (3), and the resulting
heat current q (independent of x) flowing in the system can be
computed from Eq. (1).

By applying an infinitesimal variation δT L(R) of the
boundary temperature at one end, i.e., T L(R) is varied to
T L(R) + δT L(R), while the temperature T R(L) at the other
end is fixed, the resulting temperature profile is varied to
T (x) + δT (x). This temperature profile variation δT (x) can
induce a variation δq of the heat current. We define the
differential thermal conductance (DTC) as

G ≡ δq

δ(T L − T R)
, (4)
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T L T R

x
κ(x, T (x))

T L T R

xL xR + xn − xJ xxJ x3 xn−1· · · xn

κ1(x, T1(x)) κ3 · · · κn κ2(x, T2(x))

T L T R
xL xRxJ

κ1(x, T1(x)) κ2(x, T2(x))

(a) No abrupt junction

(b) Single abrupt junction at xJ

(c) Multiple junctions

FIG. 1. (Color online) Schematics of 1D systems without any
junctions (a) and with a single junction (b) and multiple junctions (c).
The junctions are indicated by vertical black lines.

or specifically

G = GL = δq

δT L
, when T R is fixed; or

(5)
G = GR = − δq

δT R
, when T L is fixed.

In the following, we consider the cases with and without the
junctions to discuss the existence of NDTC.

Systems without abrupt junctions. As shown in Fig. 1(a),
if T R(L) is fixed (without loss of generality, we can assume
T L > T R), we will show that there is no NDTC and the heat
current q will increase as the temperature bias increases by
increasing (lowering) T L(R) (NDTC could still exist when the
temperatures at two ends vary simultaneously [30], however,
we limit our study in the cases that the temperature at one end
is fixed).

Qualitatively, we first point out that the nonexistence of
NDTC here is a direct consequence of the uniqueness of
the solution of Eq. (2), as we graphically demonstrate in
Fig. 2(a). Take the case that T R is fixed as an example. If the
temperature T L is increased to T ′L (> T L), the temperature
profile T (x) (black line) with T (xL(R)) = T L(R) and heat
current q are changed to T ′(x) (red line) with T ′(xL) = T ′L
and T ′(xR) = T R and heat current q ′. First of all, we must
have q ′ �= q. Otherwise, the first-order differential equation
dT
dx

= − q

κ(x,T ) about T with initial condition T (xR) = T R

would have nonunique solutions [T (x) and T ′(x)], which is
not allowed. Second, q ′ cannot be smaller than q [proportional
to the slope of T (x) at xR], because otherwise there will be
an intersection of T ′(x) (represented by the dashed line) and
T (x) at some xI < xR . We then must have T ′(x) = T (x) in the
coordinate range [xI ,xR] due to the uniqueness of the solution
to Eq. (2), and thus q ′ = q (contradiction). Therefore, we must
have q ′ > q; i.e., the heat current monotonically increases
with temperature T L when T R is fixed and there is no NDTC.
Similar arguments apply to the case when T L is fixed.

We have derived the analytical expressions for the DTCs as
(Appendix 1)

GL = J−1, GR = F (xR)J−1, (6)

where

F (x) ≡ exp

{∫ x

xL

1

κ(x ′,T (x ′))
∂κ

∂T

dT

dx ′ dx ′
}

,

(7)

J ≡
∫ xR

xL

F (x ′)
κ(x ′,T (x ′))

dx ′.

xL xR

T

xI

T I

T L

T (x), q

T L T (x), q

T R

(a)

xL xRxJ

T

T J
1

T J
2

T J
1

T J
2

T L

T (x), q

T L T (x), q

T R

(b)

FIG. 2. (Color online) A schematic example of temperature
profiles of systems (a) without any junctions and (b) with a single
junction at xJ when the temperature at xR is fixed and the temperature
at xL is increased from T L to T ′L. The dotted lines in (b) would give
rise to NDTC.

Such expressions are useful to calculate the magnitude of
DTCs from the temperature profile without the needs to know
directly the heat current and its variation [as in Eq. (4)]. They
also directly prove the nonexistence of NDTC here: since F (x)
and κ are positive, we have GL > 0 and GR > 0.

Systems with a single abrupt junction. As shown in
Fig. 1(b), we assume that the abrupt junction is located at xJ ∈
(xL,xR). The system can be considered as two subsystems
without any abrupt junctions coupled together at xJ . We
suppose that the subsystems in [xL,xJ ] and [xJ ,xR] have
thermal conductivity κ1(x,T1) with temperature profile T1(x)
and κ2(x,T2) with temperature profile T2(x), respectively. We
denote

T J
1 ≡ T1(xJ ), T J

2 ≡ T2(xJ ),
(8)

T L ≡ T1(xL), T R ≡ T2(xR).

At the junction, the two subsystems are coupled through a
thermal contact resistance (TCR) RJ , defined such that the
heat current q flowing through the system satisfies [31]

T J
1 − T J

2 = qRJ
(
T J

1 ,T J
2

)
. (9)

We have generally assumed that the TCR depend on two
temperatures, T J

1 and T J
2 . The TCR RJ (T J

1 ,T J
2 ) provides the

complete characterizations of the junction at the phenomeno-
logical level.
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The possibility of NDTC here can also be interpreted
graphically. Again, take the case that T R is fixed as an example.
If the temperature T L (> T R) is increased to T ′L (> T L),
the temperature profile T (x) with T (xL(R)) = T L(R), junction
temperatures T J

1,2, and heat current q are changed to T ′(x)
with T ′(xL) = T ′L and T ′(xR) = T R , junction temperatures
T ′J

1,2, and heat current q ′, as illustrated in Fig. 2(b). Because of
the discontinuous jump of temperature at xJ , we could have
q ′ > q if T ′J

2 > T J
2 (red dashed line) or q ′ < q if T ′J

2 < T J
2

(red dotted line) where the latter situation gives rise to NDTC.
We derive the conditions of the existence of NDTC in more
detail below.

Analytically, the DTCs are (Appendix 2)

GL =
(

1 − q
∂RJ

∂T J
1

)
F1(xL)

RD
, GR =

(
1 + q

∂RJ

∂T J
2

)
F2(xR)

RD
,

(10)

with

Fi(x) ≡ exp

{∫ x

xJ

1

κi(x ′,Ti(x ′))
∂κi

∂Ti

dTi

dx ′ dx ′
}

, i = 1,2,

(11)

defined on [xL,xJ ] and [xJ ,xR], respectively, and

RD ≡ RJ +
(

1 − q
∂RJ

∂T J
1

)
J1 +

(
1 + q

∂RJ

∂T J
2

)
J2, (12)

where

J1 ≡
∫ xJ

xL

F1(x ′)
κ1(x ′,T1(x ′))

dx ′, J2 ≡
∫ xR

xJ

F2(x ′)
κ2(x ′,T2(x ′))

dx ′.

(13)

If the TCR is independent of the junction temperatures
T J

1 and T J
2 , the partial derivatives of RJ in Eqs. (10) and

(12) vanish, and since Fi in Eq. (11) and Ji in Eq. (13) are
positive, thus, GL(R) > 0 and there is no NDTC. Therefore, a
temperature-dependent TCR is necessary for the existence of
NDTC. However, as we will see, it is not a sufficient condition.

In the presence of the temperature dependence of TCR,
we pick a TB such that T −1

B > |R−1∂RJ /∂T J
1,2|, where R =

(T L − T R)/q is the thermal resistance of the whole system,
including the TCR. Inside the regime defined by |T L − T R| <

TB in the (T L,T R) quarter plane, we have |q∂RJ /∂T J
1,2| < 1

and subsequently RD > 0 and GL(R) > 0: no NDTC is
displayed in this low bias regime. Therefore, a temperature
bias exceeding TB is required to observe NDTC, confirming
that NDTC is a nonlinear thermal transport phenomenon.

As the temperature bias (|T L − T R|) increases beyond TB ,
GL(R) could possibly be negative, leading to NDTC. We denote
the dimensionless quantities

X ≡
(

1 − q
∂RJ

∂T J
1

)
J1

RJ
= ∂q

∂T J
1

J1,

(14)

Y ≡
(

1 + q
∂RJ

∂T J
2

)
J2

RJ
= − ∂q

∂T J
2

J2,

such that

GL = X

1 + X + Y

F1(xL)

J1
, GR = Y

1 + X + Y

F2(xR)

J2
. (15)

GL > 0
GR < 0

GL > 0
GR < 0

GL < 0
GR > 0

GL < 0
GR > 0

GL <0
GR <0

GL > 0
GR > 0

GL > 0
GR > 0

O

-1

-1
X

Y
A

B

B

A

C

D

D

FIG. 3. (Color online) The phase diagram on the X-Y plane that
present NDTC.

Now there exists NDTC if and only if at least one of X and
Y is negative, which means that at least one of ∂q/∂T J

1 and
−∂q/∂T J

2 is negative [32]. We refer to such junctions as those
with intrinsic junction NDTC, which is now necessary and
sufficient for NDTC to occur. Thus, the existence of NDTC in
systems with a single abrupt junction is uniquely determined
by the properties of the TCRs, regardless of the properties of
the system away from the junction.

Furthermore, we can formulate the existence of NDTC on
the X-Y plane: find out the points on the plane that correspond
to negative GL or GR . NDTC exists inside the shaded areas
(A, B, and C in Fig. 3), not including the boundaries labeled by
the thick solid black and red dashed lines. Note that we have
GL < 0 and GR = 0 on the thin dotted line (−1 < X < 0,
Y = 0), while GL = 0 and GR < 0 on the thin dash-dotted
line (X = 0, −1 < Y < 0). We have RD = 0 and, thus, infinite
(±∞) DTCs on the thick red dashed line [33]. For the points in
the shaded areas and close to the thick red dashed line, we can
have very large magnitude of NDTC, useful to design sensitive
detectors for temperature fluctuations.

The blue and cyan shaded areas A and B in Fig. 3 are not
bounded on the X-Y plane. They correspond to one of GL

and GR is negative and the other is positive, i.e., GLGR < 0,

which is equivalent to

XY < 0. (16)

Equation (16) includes the situation that GL(R) is infinite (on
the thick solid red lines inside the second and the fourth
quarters of the X-Y plane). We can write Eq. (16) in a more
transparent way by rewriting the temperature dependence of
the TCR RJ (T J

1 ,T J
2 ) = RJ (T̂ J ,T̄ J ), where T̂ J ≡ T J

1 − T J
2

and T̄ J ≡ T J
1 + T J

2 :
∣∣∣∣q ∂RJ

∂T̂ J
− 1

∣∣∣∣ <

∣∣∣∣q ∂RJ

∂T̄ J

∣∣∣∣ . (17)

Equation (17) implies that |q ∂RJ

∂T̄ J | > 0, i.e., the TCR must
be dependent on T̄ J . This is physically significant, because
in thermal transport we have a natural temperature ground
of absolute zero temperature. This demonstrates the drastic
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difference between the thermal and electrical transport, where
in the latter case the junction behavior only depends on the
voltage difference (not the average voltage) across the junction.

The red shaded area C in Fig. 3 is bounded, and it
corresponds to the case that both 1 − q∂RJ /∂T J

1 and 1 +
q∂RJ /∂T J

2 are negative and RD is positive, equivalent to

q
∂RJ

∂T̂ J
− 1 >

∣∣∣∣q ∂RJ

∂T̄ J

∣∣∣∣ , |q| <
RJ + J1 + J2∣∣ ∂RJ

∂T J
1

∣∣J1 + ∣∣ ∂RJ

∂T J
2

∣∣J2

. (18)

Equations (17) and (18) imply that

|q| >

(
max

{∣∣∣∣∂RJ

∂T J
1

∣∣∣∣ ,
∣∣∣∣∂RJ

∂T J
2

∣∣∣∣
})−1

(19)

and

|q| >

(
min

{∣∣∣∣∂RJ

∂T J
1

∣∣∣∣ ,
∣∣∣∣∂RJ

∂T J
2

∣∣∣∣
})−1

, (20)

respectively, suggesting a positive minimum on the heat
current for the existence of NDTC. This again indicates that
the existence of NDTC is in the nonlinear regime, beyond low
heat current.

At the onset of NDTC, we have either GL = 0 or GR = 0
and the magnitude of heat current (versus temperature bias)
reaches its local maximum. Taking the case of GL = 0 as an
example, we have the following variation rates at the vicinity
of GL = 0 (Appendix 2):

δ(T J
1 − T J

2 )

δT L
= F1(xL) − GL(J1 + J2) ≈ F1(xL) > 0,

(21)
δ(T J

2 − T R)

δT L
= GLJ2.

When the system enters the NDTC regime of GL � 0, the
temperature increase δT L of T L is distributed over [xL,xR]
in such a way that the temperature drop over [xJ ,xR] is
decreasing with increasing T L (which is the manifestation
of NDTC), while the temperature drop over the junction is
increasing with T L, as shown in Fig. 2.

Systems with multiple abrupt junctions can exhibit both
NDTC and infinite DTCs, but the detailed conditions for
their occurrence are more complicated. It can be proved that
NDTC still requires that at least one of the junctions possess
intrinsic junction NDTC (Appendix 3). Nevertheless, these
junctions can be grouped into a single effective junction
with its properties determined by the way the junctions are
organized (e.g., the order and the connection materials) and
by the properties of those individual junctions, as shown in
Fig. 1(c). After identifying the effective TCR RJ

eff, we can
treat the system with multiple junctions as one with a single
junction. The discussions in the previous section can be readily
applied by simply replacing RJ with RJ

eff.
This procedure also provides us a routine to engineer the

TCR. For example, we can construct a system composed of
three segments in [xL,xJ

1 ], [xJ
1 ,xJ

2 ], and [xJ
2 ,xR]. Suppose

that [xL,xJ
1 ] and [xJ

2 ,xR] contain the same kind of uniform
material and the material in [xJ

1 ,xJ
2 ] is also uniform but

different. We can have a single effective junction with its TCR
RJ

eff = q/(T J
1 − T J

2 ), where T J
1 is the temperature at xJ

1 at the
side of [xL,xJ

1 ], T J
2 is the temperature at xJ

2 at the side of

[xJ
2 ,xR], and q is the heat current flowing across the effective

junction. In this way, we have a symmetrical effective junction,
i.e., RJ

eff(T
J

1 ,T J
2 ) = RJ

eff(T
J

2 ,T J
1 ).

In conclusion, we have studied the steady-state 1D thermal
transport in the diffusive regime without heat sources or
sinks. The Fourier’s law is applied to calculate the differential
thermal conductance. We find that NDTC (in the case that
the temperature at one end is fixed) cannot exist in systems
without any abrupt thermal junctions. However, we could have
NDTC if and only if a junction with intrinsic junction NDTC is
introduced. Our predictions provide a theoretical foundation to
experimentally realize NDTC through careful thermal contact
engineering, though it remains an open question to realize a
junction with intrinsic junction NDTC.

This work is partially supported by the Semiconduc-
tor Research Corporation (SRC)—Nanoelectronics Research
Initiative (NRI) via Midwest Institute for Nanoelectronics
Discovery (MIND) and the Cooling Technologies Research
Center (CTRC) at Purdue University. J.H. thanks Xiulin Ruan
(Purdue University) and Xingpeng Yan for useful discussions.

APPENDIX

1. Systems without abrupt junctions

To calculate the differential thermal conductance (DTC),
we start from the variation of q = −κ(x,T (x)) dT (x)

dx
:

δq = −κ(x,T )
d

dx
δT − ∂κ

∂T

dT

dx
δT . (A1)

We define

UL(R)(x) ≡ δT (x)

δT L(R)
, (A2)

which according to Eq. (A1) satisfies

d

dx
UL(R) + 1

κ(x,T )

∂κ

∂T

dT

dx
UL(R) + ηL(R)GL(R)

κ(x,T )
= 0. (A3)

where ηL = 1 and ηR = −1. At the boundaries we have

δT (xL(R)) = δT L(R) while δT (xR(L)) = 0, (A4)

since T (xL(R)) = T L(R). Thus, from Eq. (A2), the boundary
conditions for Eq. (A3) are

UL(xL) = 1,UL(xR) = UR(xL) = 0,UR(xR) = 1. (A5)

Equation (A3) is an inhomogeneous linear ordinary differential
equation, and the coefficients 1

κ(x,T )
∂κ
∂T

dT
dx

and ηL(R)GL(R)

κ(x,T ) are
functions of x only, since T (x) is already formally solved
from Eq. (2) and boundary conditions Eq. (3). The solution to
Eq. (A3) is

UL(R)(x) = UL(R)(xL)

F (x)
− ηL(R)GL(R)

F (x)

∫ x

xL

F (x ′)
κ(x ′,T (x ′))

dx ′,

(A6)

where

F (x) ≡ exp

{∫ x

xL

1

κ(x ′,T (x ′))
∂κ

∂T

dT

dx ′ dx ′
}

. (A7)

By evaluating Eq. (A6) at x = xR , we obtain

GL(R) = J−1ηL(R)[UL(R)(xL) − F (xR)UL(R)(xR)], (A8)
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where

J ≡
∫ xR

xL

F (x ′)
κ(x ′,T (x ′))

dx ′. (A9)

From Eqs. (A5) and (A8), we have

GL = J−1, GR = F (xR)J−1. (A10)

2. Systems with a single junction

For a system composed of two segments lying in [xL,xJ ]
and [xJ ,xR], we denote the temperature profiles T1(x)
and T2(x) and the thermal conductivity κ1(x,T1(x)) and
κ2(x,T2(x)), receptively. If a heat current is flowing in the
system, the temperature profiles satisfy

q = −κ1(x,T1(x))
dT1

dx
, xL < x < xJ ,

(A11)

q = −κ2(x,T2(x))
dT2

dx
, xJ < x < xR,

with the boundary conditions

T J
1 − T J

2 = qRJ
(
T J

1 ,T J
2

)
,T1(xL) = T L,T2(xR) = T R.

(A12)

Applying the variation δT L(R) of the boundary temperature at
one end, the resulting temperature profiles T1 and T2 are varied
to T1(x) + δT1(x) and T2(x) + δT2(x), respectively. Of course,
we have

δT1(xL) = δT L, δT2(xR) = δT R. (A13)

The heat current q is varied to q + δq. The junction temper-
atures T J

1 and T J
2 are varied to T J

1 + δT J
1 and T J

2 + δT J
2 ,

respectively. We then define the following functions:

U
L(R)
1 ≡ δT1

δT L(R)
and U

L(R)
2 ≡ δT2

δT L(R)
(A14)

on [xL,xJ ] and [xJ ,xR], respectively. They satisfy the follow-
ing equations:

ηL(R)GL(R) = −κi

dU
L(R)
i

dx
− ∂κi

∂Ti

dTi

dx
U

L(R)
i , i = 1,2

(A15)

and boundary conditions

UL
1 (xL) = 1,UR

1 (xL) = UL
2 (xR) = 0,UR

2 (xR) = 1. (A16)

Their solutions are

U
L(R)
i (x) = U

L(R)
i (xJ )

Fi(x)
− ηL(R)GL(R)

Fi(x)

∫ x

xJ

Fi(x ′)
κi(x ′,Ti(x ′))

dx ′

(A17)

where

Fi(x) ≡ exp

(∫ x

xJ

1

κi(x ′,Ti(x ′))
∂κi

∂Ti

dTi

dx ′ dx ′
)

, i = 1,2.

(A18)

By evaluating Eq. (A17) at xL for i = 1 and at xR for i = 2,
we have

U
L(R)
1 (xJ ) = F1(xL)UL(R)

1 (xL)

+ ηL(R)GL(R)
∫ xL

xJ

F1(x ′)
κ1(x ′,T1(x ′))

dx ′,

U
L(R)
2 (xJ ) = F2(xR)UL(R)

2 (xR)

+ ηL(R)GL(R)
∫ xR

xJ

F2(x ′)
κ2(x ′,T2(x ′))

dx ′. (A19)

The variation of the first equation in Eq. (A12) gives

U
L(R)
1 (xJ ) − U

L(R)
2 (xJ )

= ηL(R)GL(R)RJ + q
∂RJ

∂T J
1

U
L(R)
1 (xJ ) + q

∂RJ

∂T J
2

U
L(R)
2 (xJ ).

(A20)

By inserting Eq. (A19) into Eq. (A20), we finally get the DTC

GL =
(

1 − q
∂RJ

∂T J
1

)
F1(xL)

RD
,

GR =
(

1 + q
∂RJ

∂T J
2

)
F2(xR)

RD
, (A21)

where

RD ≡ RJ +
(

1 − q
∂RJ

∂T J
1

)
J1 +

(
1 + q

∂RJ

∂T J
2

)
J2, (A22)

with

J1 ≡
∫ xJ

xL

F1(x ′)
κ1(x ′,T1(x ′))

dx ′,J2 ≡
∫ xR

xJ

F2(x ′)
κ2(x ′,T2(x ′))

dx ′.

(A23)

From Eq. (A19), we can also readily write down

δ(T J
1 − T J

2 )

δT L
= UL

1 (xJ ) − UL
2 (xJ )

= F1(xL) − GL(J1 + J2),

δ(T J
2 − T R)

δT L
= UL

2 (xJ ) = GLJ2. (A24)

3. Existence of NDTC for systems with multiple junctions

To prove that the existence of NDTC for systems with
multiple junctions requires that at least one of the junctions has
intrinsic junction NDTC, we prove the converse by induction,
i.e., there is no NDTC if none of the junctions has intrinsic
junction NDTC.

Assume that the system lying in [xJ ,xR] contains an
arbitrary number of junctions and the DTCs for this system are
nonnegative. We now add a new segment (with no junctions
within the segment) lying in [xL,xJ ] to the existing system.
We denote T L(R) as the temperature at xL(R). We assume that
the new junction at xJ with TCR RJ (T J

1 ,T J
2 ) has no intrinsic

junction NDTC. Here, T J
1 and T J

2 are the temperatures at xJ at
the side of [xL,xJ ] and [xJ ,xR], respectively. Suppose we raise
the temperature T L infinitesimally to T L + δT L (δT L > 0)
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while keeping T R fixed. The temperature T J
1(2) is then varied

to T J
1(2) + δT J

1(2) and the heat current is changed from q to
q + δq. At the junction, we have δq = GJ

1 δT J
1 − GJ

2 δT J
2 ,

where GJ
1(2) � 0 are the junction DTCs. On the other hand, the

system in [xJ ,xR] has nonnegative DTCs; i.e., δq = GBδT J
2 ,

where GB � 0. We thus have GJ
1 δT J

1 = (GJ
2 + GB)δT J

2 . Of
course, δT J

1 cannot be negative. If either GJ
2 or GB is positive,

we will have δT J
2 = GJ

1 δT J
1 /(GJ

2 + GB) � 0 and, thus, δq =
GBδT J

2 � 0 and there is no NDTC. If both GJ
2 and GB are

zero, we will have δq = GJ
1 δT J

1 � 0 and there is no NDTC.
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