25 research outputs found

    A critical review on sustainable biochar system through gasification: energy and environmental applications

    Get PDF
    This review lays great emphasis on production and characteristics of biochar through gasification. Specifically, the physicochemical properties and yield of biochar through the diverse gasification conditions associated with various types of biomass were extensively evaluated. In addition, potential application scenarios of biochar through gasification were explored and their environmental implications were discussed. To qualitatively evaluate biochar sustainability through the gasification process, all gasification products (i.e., syngas and biochar) were evaluated via life cycle assessment (LCA). A concept of balancing syngas and biochar production for an economically and environmentally feasible gasification system was proposed and relevant challenges and solutions were suggested in this review

    Selective Glucose Isomerization to Fructose via Nitrogen-doped Solid Base Catalyst Derived from Spent Coffee Grounds

    Get PDF
    In this work, glucose isomerization to fructose was conducted via a solid base biochar catalyst derived from spent coffee grounds and melamine. The X-ray photoelectron spectroscopy (XPS) spectra identified the majority of pyridinic nitrogen on the biochar surface, which imparted the strong base character of the catalyst. Activity of the catalyst was evidenced by fast conversion of glucose (12%) and high selectivity to fructose (84%) in 20 min at a moderate temperature (120 °C) compared to recently reported immobilized tertiary amines at comparable N concentrations (10-15 mol% relative to glucose). By increasing the reaction temperature to 160 °C, fructose yield achieved 14% in 5 min. The base biochar catalyst showed superior selectivity (\u3e80%) to commonly used homogeneous base catalysts such as aqueous hydroxides and amines (50-80%) and comparable catalytic activity (~20 mol% conversion within 20 min). Moreover, co-solvent of acetone in the reaction system may increase the overall basicity by stabilizing protonated water clusters via hydrogen bonding, which led to faster conversion and higher fructose selectivity than those in water. Approximately 19% fructose was obtained at 160 °C, and the basic sites on the biochar catalyst were stable in hydrothermal environment as indicated by acid-base titration test. Therefore, nitrogen-doped engineered biochar can potentially serve as solid base catalyst for biorefinery processes

    Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization

    Get PDF
    Glucose isomerization to fructose is one of the most important reactions in the field of biomass valorization. We demonstrate wood waste valorization with MgCl2 salt to synthesize an environment-friendly catalyst (i.e., MgO-biochar), which exhibits effective glucose-to-fructose isomerization with over 30% fructose yield and 80% selectivity at only 100 °C for 30 min in water as a green medium. This study highlights that one-step synthesis can effectively disperse and tether MgO nanostructures to the biochar matrix, which displays a significant reduction of Mg leaching compared to MgO-biochars produced by two-step synthesis and pure MgO. The MgCl2 acts as a porogen that facilitates the formation of a porous biochar structure and dispersion of nanostructured MgO. We identify key parameters of impregnation media (ethylene glycol, ethanol, and water) and pyrolysis conditions (600/750 °C in N2/CO2 atmosphere) that are responsible for adjusting the reactivity and stability of MgO, which enable the design of more effective and recyclable biochar catalysts. Weak interactions between MgCl2 and biomass in the presence of aqueous miscible organic solvents as shape-directing agents are accountable for fast leaching of Mg from the MgO-biochar surface. The FTIR spectra confirm the existence of various coordinations on the hydroxylated surfaces of MgO-biochar surfaces. The mesoporous structures of the biochar support enhance the stability of MgO moieties as revealed by BET, XRD, and Raman analyses. Given the benefits of effective MgO dispersion on the biochar support, we can reduce the amount of MgO active species involved in each reaction run, which mitigates over-reaction compared to pure MgO catalysts and achieves high fructose yield and selectivity for three consecutive cycles

    Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste

    Get PDF
    Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl4 as the catalyst. The overall rate of the process was the fastest in ACN/H2O and acetone/H2O, followed by DMSO/H2O and THF/H2O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H2O and acetone/H2O. The constant HMF maxima (26-27mol%) in ACN/H2O, acetone/H2O, and DMSO/H2O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H2O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion

    Artificial Neural Network Applied to Automobile Insurance Ratemaking

    No full text
    自1999年以來,台灣汽車車體損失險的投保率下降且損失率逐年上升,與強制第三責任險損失率逐年下降形成強烈對比,理論上若按個人風險程度計收保費,吸引價格認同的被保險人加入並對高風險者加費,則可提高投保率並且確保損失維持在合理範圍內。基於上述背景,本文採用國內某產險公司1999至2002年汽車車體損失保險資料為依據,探討過去保費收入與未來賠款支出的關係,在滿足不偏性的要求下,尋求降低預測誤差變異數的方法。 研究結果顯示:車體損失險存在保險補貼。以最小誤差估計法計算的新費率,可以改善收支不平衡的現象,但對於應該減費的低風險保戶,以及應該加費的高高風險保戶,以類神經網路推計的加減費系統具有較大加減幅度,因此更能有效的區分高低風險群組,降低不同危險群組間的補貼現象,並在跨年度的資料中具有較小的誤差變異。In the past five years, the insured rate of Automobile Material Damage Insurance (AMDI) has been declined but the loss ratio is climbing, in contrast to the decreasing trend in the loss ratio of the compulsory automobile liability insurance. By charging corresponding premium based on individual risks, we could attract low risk entrant and reflect the highly risk costs. The loss ratio can thus be modified to a reasonable level. To further illustrate the concept, we aim to take the AMDI to study the most efficient estimator of the future claim. Because the relationship of loss experience (input) and future claim estimation (output) is similar to the human brain performs. We can analyze the relation by minimum bias procedure and artificial neural network, reducing error with overall rate level could go through with minimum error of classes or individual, demonstrated using policy year 1999 to 2002 data. According to the thesis, cross subsidization exists in Automobile Material Damage Insurance. The new rate produced by minimum bias estimate can alleviate the unbalance between the premium and loss. However the neural network classification rating can allocate those premiums more fairly, where ‘fairly’ means that higher premiums are paid by those insured with greater risk of loss and vice-versa. Also, it is the more efficient than the minimum bias estimator in the panel data

    Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts

    No full text
    © 2020 The Royal Society of Chemistry. Valorization of lignin to valuable chemicals and biofuels increases the economic viability of sustainable biorefineries. This work aimed at elucidating how the lignin structures recovered from various agricultural and industrial residues governed the downstream catalytic conversion. Three types of lignins, namely bio-enzymatic lignin (BL), organosolv lignin (OL), and Kraft lignin (KL), were fully characterized by HSQC-NMR, TGA, FTIR, and SEM to obtain a detailed description of their structures. In consideration of redox-active CuO and highly active carbon-modified boron nitride (BCN) in oxidative dehydrogenation, a two-dimensional CuO/BCN catalyst was prepared and explored in microwave-assisted lignin conversion to improve the yields of aromatic monomers. BL achieved the highest yield of monomers (10 wt%) over the CuO/BCN catalyst after the 3rd cycle in 30 min under mild conditions (200 °C). The yields of bio-oils reached 70 wt% in 10 min when BL and OL were used as the substrate. High efficiency of the microwave-assisted reaction was illustrated by comparing with that of the hydrothermal reaction. This work demonstrated strong dependence of the conversion efficiency on the interunit linkages and functional groups of lignin structures. The strong metal-support interaction between CuO and BCN not only facilitated lignin depolymerization via the promoted electron transfer, but also enhanced the stability of Cu catalysts under hydrothermal conditions. In addition, elucidation of the catalyst redox evolution shed light on the role of the CuO/BCN catalyst in lignin depolymerization in recycle runs

    Selective Glucose Isomerization to Fructose via Nitrogen-doped Solid Base Catalyst Derived from Spent Coffee Grounds

    No full text
    In this work, glucose isomerization to fructose was conducted via a solid base biochar catalyst derived from spent coffee grounds and melamine. The X-ray photoelectron spectroscopy (XPS) spectra identified the majority of pyridinic nitrogen on the biochar surface, which imparted the strong base character of the catalyst. Activity of the catalyst was evidenced by fast conversion of glucose (12%) and high selectivity to fructose (84%) in 20 min at a moderate temperature (120 °C) compared to recently reported immobilized tertiary amines at comparable N concentrations (10-15 mol% relative to glucose). By increasing the reaction temperature to 160 °C, fructose yield achieved 14% in 5 min. The base biochar catalyst showed superior selectivity (>80%) to commonly used homogeneous base catalysts such as aqueous hydroxides and amines (50-80%) and comparable catalytic activity (~20 mol% conversion within 20 min). Moreover, co-solvent of acetone in the reaction system may increase the overall basicity by stabilizing protonated water clusters via hydrogen bonding, which led to faster conversion and higher fructose selectivity than those in water. Approximately 19% fructose was obtained at 160 °C, and the basic sites on the biochar catalyst were stable in hydrothermal environment as indicated by acid-base titration test. Therefore, nitrogen-doped engineered biochar can potentially serve as solid base catalyst for biorefinery processes.This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acssuschemeng.8b02752. Posted with permission.</p

    Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization

    No full text
    Glucose isomerization to fructose is one of the most important reactions in the field of biomass valorization. We demonstrate wood waste valorization with MgCl2 salt to synthesize an environment-friendly catalyst (i.e., MgO-biochar), which exhibits effective glucose-to-fructose isomerization with over 30% fructose yield and 80% selectivity at only 100 °C for 30 min in water as a green medium. This study highlights that one-step synthesis can effectively disperse and tether MgO nanostructures to the biochar matrix, which displays a significant reduction of Mg leaching compared to MgO-biochars produced by two-step synthesis and pure MgO. The MgCl2 acts as a porogen that facilitates the formation of a porous biochar structure and dispersion of nanostructured MgO. We identify key parameters of impregnation media (ethylene glycol, ethanol, and water) and pyrolysis conditions (600/750 °C in N2/CO2 atmosphere) that are responsible for adjusting the reactivity and stability of MgO, which enable the design of more effective and recyclable biochar catalysts. Weak interactions between MgCl2 and biomass in the presence of aqueous miscible organic solvents as shape-directing agents are accountable for fast leaching of Mg from the MgO-biochar surface. The FTIR spectra confirm the existence of various coordinations on the hydroxylated surfaces of MgO-biochar surfaces. The mesoporous structures of the biochar support enhance the stability of MgO moieties as revealed by BET, XRD, and Raman analyses. Given the benefits of effective MgO dispersion on the biochar support, we can reduce the amount of MgO active species involved in each reaction run, which mitigates over-reaction compared to pure MgO catalysts and achieves high fructose yield and selectivity for three consecutive cycles.This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acssuschemeng.0c00278. Posted with permission.</p
    corecore