9,675 research outputs found

    Compressive Channel Estimation and Multi-user Detection in C-RAN

    Full text link
    This paper considers the channel estimation (CE) and multi-user detection (MUD) problems in cloud radio access network (C-RAN). Assuming that active users are sparse in the network, we solve CE and MUD problems with compressed sensing (CS) technology to greatly reduce the long identification pilot overhead. A mixed L{2,1}-regularization functional for extended sparse group-sparsity recovery is proposed to exploit the inherently sparse property existing both in user activities and remote radio heads (RRHs) that active users are attached to. Empirical and theoretical guidelines are provided to help choosing tuning parameters which have critical effect on the performance of the penalty functional. To speed up the processing procedure, based on alternating direction method of multipliers and variable splitting strategy, an efficient algorithm is formulated which is guaranteed to be convergent. Numerical results are provided to illustrate the effectiveness of the proposed functional and efficient algorithm.Comment: 6 pages, 3 figure

    Chiral geometry of higher excited bands in triaxial nuclei with particle-hole configuration

    Full text link
    The lowest six rotational bands have been studied in the particle-rotor model with the particle-hole configuration πh11/21⊗νh11/2−1\pi h^1_{11/2}\otimes\nu h^{-1}_{11/2} and different triaxiality parameter γ\gamma. Both constant and spin-dependent variable moments of inertial (CMI and VMI) are introduced. The energy spectra, electromagnetic transition probabilities, angular momentum components and KK-distribution have been examined. It is shown that, besides the band 1 and band 2, the predicted band 3 and band 4 in the calculations of both CMI and VMI for atomic nuclei with γ=30∘\gamma=30^\circ could be interpreted as chiral doublet bands.Comment: 4 pages, 4 figure

    Fuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model

    Get PDF
    In this paper, fuzzy theory and interacting multiple model are introduced into H∞ filter-based particle filter to propose a new fuzzy interacting multiple model H∞ particle filter based on current statistical model. Each model uses H∞ particle filter algorithm for filtering, in which the current statistical model can describe the maneuver of target accurately and H∞ filter can deal with the nonlinear system effectively. Aiming at the problem of large amount of probability calculation in interacting multiple model by using combination calculation method, our approach calculates each model matching probability through the fuzzy theory, which can not only reduce the calculation amount, but also improve the state estimation accuracy to some extent. The simulation results show that the proposed algorithm can be more accurate and robust to track maneuvering target

    Strangeness spin, magnetic moment and strangeness configurations of the proton

    Full text link
    The implications of the empirical signatures for the positivity of the strangeness magnetic moment μs\mu_s, and the negativity of the strangeness contribution to the proton spin Δs\Delta_s, on the possible uudssˉuuds\bar s configurations of five quarks in the proton are analyzed. The empirical signs for the values of these two observables can only be obtained in configurations where the uudsuuds system is orbitally excited and the sˉ\bar s quark is in the ground state. The configurations, in which the sˉ\bar s is orbitally excited, which include the conventional K+Λ0K^+\Lambda^0 congfiguration, with the exception of that, in which the uudsuuds component has spin 2, yield negative values for μs\mu_s. Here the strangeness spin Δs\Delta_s, the strangeness magnetic moment μs\mu_s and the axial coupling constant GAsG_A^s are calculated for all possible configurations of the uudssˉuuds\bar s component of the proton. In the configuration with [4]FS[22]F[22]S[4]_{FS}[22]_F[22]_S flavor-spin symmetry, which is likely to have the lowest energy, μs\mu_s is positive and Δs≃GAs≃−1/3μs\Delta_s\simeq G_A^s\simeq -1/3\mu_s.Comment: 17 page

    Fuzzy-Model-Based Output Feedback Steering Control in Autonomous Driving Subject to Actuator Constraints

    Get PDF

    Faba Bean (Vicia faba L.) Nodulating Rhizobia in Panxi, China, Are Diverse at Species, Plant Growth Promoting Ability, and Symbiosis Related Gene Levels

    Get PDF
    We isolated 65 rhizobial strains from faba bean (Vicia faba L.) from Panxi, China, studied their plant growth promoting ability with nitrogen free hydroponics, genetic diversity with clustered analysis of combined ARDRA and IGS-RFLP, and phylogeny by sequence analyses of 16S rRNA gene, three housekeeping genes and symbiosis related genes. Eleven strains improved the plant shoot dry mass significantly comparing to that of not inoculated plants. According to the clustered analysis of combined ARDRA and IGS-RFLP the isolates were genetically diverse. Forty-one of 65 isolates represented Rhizobium anhuiense, and the others belonged to R. fabae, Rhizobium vallis, Rhizobium sophorae, Agrobacterium radiobacter, and four species related to Rhizobium and Agrobacterium. The isolates carried four and five genotypes of nifH and nodC, respectively, in six different nifH-nodC combinations. When looking at the species-nifH-nodC combinations it is noteworthy that all but two of the six R. anhuiense isolates were different. Our results suggested that faba bean rhizobia in Panxi are diverse at species, plant growth promoting ability and symbiosis related gene levels.Peer reviewe

    Reflected Schr\"odinger Bridge for Constrained Generative Modeling

    Full text link
    Diffusion models have become the go-to method for large-scale generative models in real-world applications. These applications often involve data distributions confined within bounded domains, typically requiring ad-hoc thresholding techniques for boundary enforcement. Reflected diffusion models (Lou23) aim to enhance generalizability by generating the data distribution through a backward process governed by reflected Brownian motion. However, reflected diffusion models may not easily adapt to diverse domains without the derivation of proper diffeomorphic mappings and do not guarantee optimal transport properties. To overcome these limitations, we introduce the Reflected Schrodinger Bridge algorithm: an entropy-regularized optimal transport approach tailored for generating data within diverse bounded domains. We derive elegant reflected forward-backward stochastic differential equations with Neumann and Robin boundary conditions, extend divergence-based likelihood training to bounded domains, and explore natural connections to entropic optimal transport for the study of approximate linear convergence - a valuable insight for practical training. Our algorithm yields robust generative modeling in diverse domains, and its scalability is demonstrated in real-world constrained generative modeling through standard image benchmarks

    Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Mycoplasma bovis

    Get PDF
    A loop-mediated isothermal amplification (LAMP) assay targeting uvrC of Mycoplasma bovis was developed and evaluated. The assay specifically amplified only M. bovis; no cross-reactivity was observed for other Mycoplasma species or respiratory bacterial species. The sensitivity of the assay in pure cultures was 10-fold higher than that of polymerase chain reaction (PCR), with a detection limit of 34 CFU per reaction. The accuracy of the assay was further validated by both restriction analysis and nucleotide sequencing of the amplified product. The assay was applied to 98 specimens collected from cattle with respiratory disease or from healthy individuals and compared with a PCR-based assay. The sensitivity and specificity of the LAMP assay in terms of PCR was 100 and 74%, respectively. In conclusion, we successfully developed a rapid, specific, and sensitive LAMP test for M. bovis detection in a clinical setting.Key words: Loop-mediated isothermal amplification, polymerase chain reaction, uvrC gene, Mycoplasma bovis, cattle

    Exact solution for infinitely strongly interacting Fermi gases in tight waveguides

    Full text link
    We present an exact analytical solution of the fundamental systems of quasi-one-dimensional spin-1/2 fermions with infinite repulsion for arbitrary confining potential. The eigenfunctions are constructed by the combination of Gireardeau's hard-core contacting boundary condition and group theoretical method which guarantees the obtained states to be simultaneously the eigenstates of SS and SzS_z and fulfill the antisymmetry under odd permutation. We show that the total ground-state density profile behaves like the polarized noninteracting fermions, whereas the spin-dependent densities display different properties for different spin configurations. We also discuss the splitting of the ground states for large but finite repulsion.Comment: 4 pages, 3 figures, version accepted for publication in Phys. Rev. Let
    • …
    corecore