990 research outputs found
Recommended from our members
Metabolic Pathways Enhancement Confers Poor Prognosis in p53 Exon Mutant Hepatocellular Carcinoma.
RNA-Sequencing (RNA-Seq), the most commonly used sequencing application tool, is not only a method for measuring gene expression but also an excellent media to detect important structural variants such as single nucleotide variants (SNVs), insertion/deletion (Indels), or fusion transcripts. The Cancer Genome Atlas (TCGA) contains genomic data from a variety of cancer types and also provides the raw data generated by TCGA consortium. p53 is among the top 10 somatic mutations associated with hepatocellular carcinoma (HCC). The aim of the present study was to analyze concordant different gene profiles and the priori defined set of genes based on p53 mutation status in HCC using RNA-Seq data. In the study, expression profile of 11 799 genes on 42 paired tumor and adjacent normal tissues was collected, processed, and further stratified by the mutated versus normal p53 expression. Furthermore, we used a knowledge-based approach Gene Set Enrichment Analysis (GSEA) to compare between normal and p53 mutation gene expression profiles. The statistical significance (nominal P value) of the enrichment score (ES) genes was calculated. The ranked gene list that reflects differential expression between p53 wild-type and mutant genotypes was then mapped to metabolic process by KEGG, an encyclopedia of genes and genomes to assign functional meanings. These approaches enable us to identify pathways and potential target gene/pathways that are highly expressed in p53 mutated HCC. Our analysis revealed 2 genes, the hexokinase 2 (HK2) and Enolase 1 (ENO1), were conspicuous of red pixel in the heatmap. To further explore the role of these genes in HCC, the overall survival plots by Kaplan-Meier method were performed for HK2 and ENO1 that revealed high HK2 and ENO1 expression in patients with HCC have poor prognosis. These results suggested that these glycolysis genes are associated with mutated-p53 in HCC that may contribute to poor prognosis. In this proof-of-concept study, we proposed an approach for identifying novel potential therapeutic targets in human HCC with mutated p53. These approaches can take advantage of the massive next-generation sequencing (NGS) data generated worldwide and make more out of it by exploring new potential therapeutic targets
Antitumour necrosis factor-α agents and development of new-onset cirrhosis or non-alcoholic fatty liver disease: a retrospective cohort.
Objective
Elevated tumour necrosis factor (TNF)-α has been implicated in the progression of liver fibrosis and pathogenesis of non-alcoholic fatty liver disease (NAFLD). We aim to investigate the impact of anti-TNF-α agents on the development of cirrhosis and NAFLD.
Design
This retrospective cohort study used a US claims database between 1 January 2010 and 31 December 2016. We identified adult patients with ankylosing spondylitis, inflammatory bowel disease, psoriatic arthritis or rheumatoid arthritis. Anti-TNF-α agents of interest included adalimumab, certolizumab, etanercept, golimumab and infliximab. The primary composite outcome was the development of new-onset cirrhosis, NAFLD or non-alcoholic steatohepatitis (NASH). The secondary outcomes were the development of (1) cirrhosis and (2) NAFLD or NASH. Propensity score for anti-TNF-α agent use was generated by logistic regression. Cox proportional hazard models adjusting for the propensity score were used with regard to time-varying anti-TNF-α agent exposure.
Results
This study included 226 555 incident patients with immune-related diseases. During the median 1.5 years follow-up, there was an increased hazard with anti-TNF-α agent use in regard to liver outcomes (composite outcome HR: 1.47, 95% CI 1.27 to 1.70; cirrhosis HR 1.47, 95% CI 0.96 to 2.23; NAFLD or NASH HR 1.53, 95% CI 1.32 to 1.77). The composite outcome hazard was increased for each immune-related disease (HR 1.25-1.90).
Conclusion
In the short term, we did not observe a beneficial effect of anti-TNF-α agent use for development of cirrhosis, NAFLD or NASH in patients with immune-related diseases
Sub-wavelength localization of near-fields in coupled metallic spheres for single emitter polarization analysis
We numerically demonstrate selective near-field localization determined by
the polarization state of a single emitter coupled to plasmonic nano-cluster.
Seven gold nanospheres are carefully arranged such that up to ten polarization
states of the single emitter, including linear, circular, and elliptical
polarizations, can be distinguished via the distinct field localization in four
gaps. The ability to transform polarization state into field spatial
localization may find application for single emitter polarization analysis.Comment: 4 pages, 4 figures; accepted by Optics Letter
Fatty Acid Composition of Taiwanese Human Milk
BackgroundThe purpose of this study was to analyze quantitatively the fatty acid composition of the milk of Taiwanese women.MethodsTwo hundred and sixty-nine human milk specimens were obtained from 240 Taiwanese mothers, aged 19-41 years, and subjected to chromatographic analysis.ResultsMilk specimens were pooled by the mothers' districts of residence and lactation stages, at 0-11 days, 22-45 days, 46-65 days and 66-297 days after delivery. The fatty acid composition was expressed as weight percentage of all fatty acids detected with C8-C24 chain length. More than 80% of the fatty acids were composed of lauric, myristic, palmitic, stearic, oleic and linoleic acids. The amount of saturated fatty acid was 36.7%. With regard to essential fatty acids, the amount of linoleic acid (LA) was 22% and that of linolenic acid (ALA) was 1.8%, both levels being higher than in human milk from Western countries. However, the ratio of LA/ALA remained at 13:1 for the whole duration of lactation. It has been reported that mothers with high fish consumption have a high content of docosahexaenoic acid and eicosapentaenoic acid in their milk, and we found this phenomenon occurring in our study. The percentage of docosahexaenoic acid and eicosapentaenoic acid in Taiwanese human milk was 0.79% and 0.17%, respectively.ConclusionFatty acid composition in human milk varies during lactation. With regard to essential fatty acids, the amount of LA was 22% and that of ALA was 1.8%, both levels being higher than in human milk from Western and other Asian countries
Recommended from our members
The Sizes and Composition of HDL-Cholesterol Are Significantly Associated with Inflammation in Rheumatoid Arthritis Patients.
Rheumatoid arthritis (RA), a chronic inflammatory disease, carries a significant burden of atherosclerotic cardiovascular diseases (ASCVD). With their heterogeneous composition, high-density lipoprotein (HDL) particles have varied athero-protective properties, and some may even increase ASCVD risk. In this prospective and cross-sectional study, we aimed to examine the relationship between HDL sizes/metabolites and inflammation in RA. Using 1H-NMR-based lipid/metabolomics, differential HDL-related metabolites were identified between RA patients and healthy control (HC) subjects and between RA patients with and without anti-citrullinated peptide antibodies (ACPA). The correlation between the discriminative HDL-related metabolites and C-reactive protein (CRP) was evaluated in RA patients. RA patients demonstrated higher particle number, lipids, cholesterol, cholesterol ester, free cholesterol, and phospholipids in large/very large-sized HDLs. ACPA-positive patients had higher L-HDL-C and L-HDL-CE but lower small-/medium-sized HDL-TG levels than ACPA-negative patients. An inverse correlation was found between CRP levels and small-sized HDLs. Janus kinase inhibitor treatment was associated with increased serum small-sized HDL-related metabolites and decreased CRP levels. We are the first to reveal the significant associations between RA inflammation and HDL sizes/metabolites. A potential link between ACPA positivity and changes in serum levels of HDL-related metabolites was also observed in RA patients
Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility
<p>Abstract</p> <p>Background</p> <p>Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI).</p> <p>Methods</p> <p>Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis.</p> <p>Results</p> <p>Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4.</p> <p>Conclusions</p> <p>Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.</p
Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing
Number of misassemblies for different assembly strategies. Number of misassemblies for the de novo assembly results for E. coli DH1 and S. Parasanguinis FW213 are shown together with their standard errors of the mean. Group A [PE] and Group A [SE] represent all reads assembled as paired-end reads and single end reads, respectively. Group A [PE + SE] represents all the non-overlapped paired-end reads assembled together with merged reads. Group M [PE] and Group M [SE] represent Group M reads assembled as paired-end reads and single end reads, respectively. The numbers of misassemblies fluctuate a lot when depths of read number are low and gradually decreases until they reach a steady number. The paired-end reads (Group A [PE] and Group M [PE]) in S. Parasanguinis FW213 gave the lowest number of misassemblies when depths of read number are high. (TIFF 669 kb
- …