96 research outputs found

    MIXED-FLOW PUMP OPTIMISATION AND FLOW CHARACTERISTICS BASED ON THE ‘DUAL CARBON’ GOALS

    Get PDF
    Urban water supply and drainage, the shipbuilding industry, the petrochemical industry and other professional fields rely heavily on mixed-flow pumps. Enhancing the efficiency of mixed-flow pumps is crucial for achieving the ‘dual carbon’ goals and promote energy saving and emission reduction. In this study, the guide vane and impeller of the mixed-flow pump were optimised, focusing on its low head and effectiveness in power plants. The performance of the original and optimised pumps was then evaluated under various flow rate conditions, and their hydraulic performance was compared. Results showed that the efficiency of the optimised mixed-flow pump was improved, resulting in effective enhancement of energy loss in the pump passage. The optimised guide vane facilitated smoother water flow into the outlet pipeline, achieving energy savings, emission reduction and contributing to the realisation of the ‘dual carbon’ goals

    Impedance Boundary Conditions in a Hybrid FEM/MOM Formulation

    Get PDF
    When numerically modeling structures with imperfect conductors or conductors coated with a dielectric material, impedance boundary conditions (IBCs) can substantially reduce the amount of computation required. This paper incorporates the IBC in the finite-element method (FEM) part of a FEM/method of moments (FEM/MoM) modeling code. Properties of the new formulation are investigated and the formulation is used to model three practical electromagnetic problems. Results are compared to either measured data or other numerical results. The effect of the IBC on the condition number of hybrid FEM/MoM matrices is also discussed

    Generic photonic integrated linear operator processor

    Full text link
    Photonic integration platforms have been explored extensively for optical computing with the aim of breaking the speed and power efficiency limitations of traditional digital electronic computers. Current technologies typically focus on implementing a single computation iteration optically while leaving the intermediate processing in the electronic domain, which are still limited by the electronic bottlenecks. Few explorations have been made of all-optical recursive architectures for computations on integrated photonic platforms. Here we propose a generic photonic integrated linear operator processor based on an all-optical recursive system that supports linear operations ranging from matrix computations to solving equations. We demonstrate the first all-optical on-chip matrix inversion system and use this to solve integral and differential equations. The absence of electronic processing during multiple iterations indicates the potential for an orders-of-magnitudes speed enhancement of this all-optical computing approach compared to electronic computers. We realize matrix inversions, Fredholm integral equations of the second kind, 2^{nd} order ordinary differential equations, and Poisson equations using the generic photonic integrated linear operator processor

    Redesigning spectroscopic sensors with programmable photonic circuits

    Full text link
    Optical spectroscopic sensors are a powerful tool to reveal light-matter interactions in many fields, such as physics, biology, chemistry, and astronomy. Miniaturizing the currently bulky spectrometers has become imperative for the wide range of applications that demand in situ or even in vitro characterization systems, a field that is growing rapidly. Benchtop spectrometers are capable of offering superior resolution and spectral range, but at the expense of requiring a large size. In this paper, we propose a novel method that redesigns spectroscopic sensors via the use of programmable photonic circuits. Drawing from compressive sensing theory, we start by investigating the most ideal sampling matrix for a reconstructive spectrometer and reveal that a sufficiently large number of sampling channels is a prerequisite for both fine resolution and low reconstruction error. This number is, however, still considerably smaller than that of the reconstructed spectral pixels, benefitting from the nature of reconstruction algorithms. We then show that the cascading of a few engineered MZI elements can be readily programmed to create an exponentially scalable number of such sampling spectral responses over an ultra-broad bandwidth, allowing for ultra-high resolution down to single-digit picometers without incurring additional hardware costs. Experimentally, we implement an on-chip spectrometer with a fully-programmable 6-stage cascaded MZI structure and demonstrate a 200 nm bandwidth using only 729 sampling channels. This achieves a bandwidth-to-resolution ratio of over 20,000, which is, to our best knowledge, about one order of magnitude greater than any reported miniaturized spectrometers to date. We further illustrate that by employing dispersion-engineered waveguide components, the device bandwidth can be extended to over 400 nm

    Experimental Evaluation of Power Bus Decoupling on a 4-Layer Printed Circuit Board

    Get PDF
    The switching of active devices on printed circuit boards (PCBs) can cause a momentary surge or drop in the power bus voltage. Decoupling capacitors are often utilized to alleviate this problem. They help to stabilize the power bus voltage by supplying transient current to active devices. The decoupling strategy, including where to place the high-frequency decoupling capacitors, is often a topic of debate. This paper examines the effect of decoupling capacitor placement on a 4-layer printed circuit board. Some design guidelines are provided

    Power-Bus Decoupling with Embedded Capacitance in Printed Circuit Board Design

    Get PDF
    This paper experimentally investigates the effectiveness of embedded capacitance for reducing power-bus noise in high-speed printed circuit board designs. Boards with embedded capacitance employ closely spaced power-return plane pairs separated by a thin layer of dielectric material. In this paper, test boards with four embedded capacitance materials are evaluated. Power-bus input impedance measurements and power-bus noise measurements are presented for boards with various dimensions and layer stack ups. Unlike discrete decoupling capacitors, whose effective frequency range is generally limited to a few hundred megahertz due to interconnect inductance, embedded capacitance was found to efficiently reduce power-bus noise over the entire frequency range evaluated (up to 5 GHz)

    Mitigating Power Bus Noise with Embedded Capacitance in PCB Designs

    Get PDF
    This paper investigates the power bus noise and power bus impedance of printed circuit boards with four different kinds of embedded capacitance. These boards have power-ground plane pairs separated by a very thin layer of material with high dielectric permittivity. It is shown that embedded capacitance effectively reduces power bus noise over the entire frequency range evaluated (up to 5 GHz)

    Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanism

    Full text link
    Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 µm) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12- O -tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 µm Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66040/1/j.1471-4159.2003.02127.x.pd
    corecore