179 research outputs found

    3D MRI Data Curation for Deep Learning-based Brain Shift Simulation during Tumor Resection

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1130/thumbnail.jp

    Biomechanical Modeling of Brain Shift During Neurosurgery

    Get PDF
    https://openworks.mdanderson.org/sumexp22/1051/thumbnail.jp

    Successful and unsuccessful cannabis quitters: Comparing group characteristics and quitting strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to improve treatments for cannabis use disorder, a better understanding of factors associated with successful quitting is required.</p> <p>Method</p> <p>This study examined differences between successful (<it>n </it>= 87) and unsuccessful (<it>n </it>= 78) cannabis quitters. Participants completed a questionnaire addressing demographic, mental health, and cannabis-related variables, as well as quitting strategies during their most recent quit attempt.</p> <p>Results</p> <p>Eighteen strategies derived from cognitive behavioral therapy were entered into a principal components analysis. The analysis yielded four components, representing (1) Stimulus Removal, (2) Motivation Enhancement, (3) (lack of) Distraction, and (4) (lack of) Coping. Between groups comparisons showed that unsuccessful quitters scored significantly higher on Motivation Enhancement and (lack of) Coping. This may indicate that unsuccessful quitters focus on the desire to quit, but do not sufficiently plan strategies for coping. Unsuccessful quitters also had significantly more symptoms of depression and stress; less education; lower exposure to formal treatment; higher day-to-day exposure to other cannabis users; and higher cannabis dependence scores.</p> <p>Conclusions</p> <p>The findings suggest that coping, environmental modification, and co-morbid mental health problems may be important factors to emphasize in treatments for cannabis use disorder.</p

    Critical Role of NADPH Oxidase in Neuronal Oxidative Damage and Microglia Activation following Traumatic Brain Injury

    Get PDF
    BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS) following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2)(-)), and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2)(-) induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins Ξ²-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI

    Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells.</p> <p>Methods</p> <p>Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed.</p> <p>Results</p> <p>In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D) caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D) resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration <it>in vitro</it>.</p> <p>Conclusion</p> <p>Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.</p

    Detecting differential allelic expression using high-resolution melting curve analysis: application to the breast cancer susceptibility gene CHEK2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene <it>CHEK2 </it>encodes a checkpoint kinase playing a key role in the DNA damage pathway. Though <it>CHEK2 </it>has been identified as an intermediate breast cancer susceptibility gene, only a small proportion of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene expression regulation provides a potential mechanism for generating disease susceptibility. The detection of differential allelic expression (DAE) represents a sensitive assay to direct the search for a functional sequence variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether <it>CHEK2 </it>was subject to DAE in lymphoblastoid cell lines (LCLs) from high-risk breast cancer patients for whom no mutation in <it>BRCA1</it> or <it>BRCA2</it> had been identified.</p> <p>Methods</p> <p>We implemented an assay based on high-resolution melting (HRM) curve analysis and developed an analysis tool for DAE assessment.</p> <p>Results</p> <p>We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter region or in a regulatory element of <it>CHEK2 </it>that would lead to DAE in the transcriptional regulatory milieu of freely proliferating LCLs.</p> <p>Conclusions</p> <p>Our results support that HRM is a sensitive and accurate method for DAE assessment. This approach would be of great interest for high-throughput mutation screening projects aiming to identify genes carrying functional regulatory polymorphisms.</p

    Using genetic variation and environmental risk factor data to identify individuals at high risk for age-related macular degeneration

    Get PDF
    A major goal of personalized medicine is to pre-symptomatically identify individuals at high risk for disease using knowledge of each individual's particular genetic profile and constellation of environmental risk factors. With the identification of several well-replicated risk factors for age-related macular degeneration (AMD), the leading cause of legal blindness in older adults, this previously unreachable goal is beginning to seem less elusive. However, recently developed algorithms have either been much less accurate than expected, given the strong effects of the identified risk factors, or have not been applied to independent datasets, leaving unknown how well they would perform in the population at large. We sought to increase accuracy by using novel modeling strategies, including multifactor dimensionality reduction (MDR) and grammatical evolution of neural networks (GENN), in addition to the traditional logistic regression approach. Furthermore, we rigorously designed and tested our models in three distinct datasets: a Vanderbilt-Miami (VM) clinic-based case-control dataset, a VM family dataset, and the population-based Age-related Maculopathy Ancillary (ARMA) Study cohort. Using a consensus approach to combine the results from logistic regression and GENN models, our algorithm was successful in differentiating between high- and low-risk groups (sensitivity 77.0%, specificity 74.1%). In the ARMA cohort, the positive and negative predictive values were 63.3% and 70.7%, respectively. We expect that future efforts to refine this algorithm by increasing the sample size available for model building, including novel susceptibility factors as they are discovered, and by calibrating the model for diverse populations will improve accuracy

    Novel Pandemic Influenza A(H1N1) Viruses Are Potently Inhibited by DAS181, a Sialidase Fusion Protein

    Get PDF
    Background: The recent emergence of a novel pandemic influenza A(H1N1) strain in humans exemplifies the rapid and unpredictable nature of influenza virus evolution and the need for effective therapeutics and vaccines to control such outbreaks. However, resistance to antivirals can be a formidable problem as evidenced by the currently widespread oseltamivir- and adamantane-resistant seasonal influenza A viruses (IFV). Additional antiviral approaches with novel mechanisms of action are needed to combat novel and resistant influenza strains. DAS181 (Fludase)β„’) is a sialidase fusion protein in early clinical development with in vitro and in vivo preclinical activity against a variety of seasonal influenza strains and highly pathogenic avian influenza strains (A/H5N1). Here, we use in vitro, ex vivo, and in vivo models to evaluate the activity of DAS181 against several pandemic influenza A(H1N1) viruses. Methods and Findings: The activity of DAS181 against several pandemic influenza A(H1N1) virus isolates was examined in MDCK cells, differentiated primary human respiratory tract culture, ex-vivo human bronchi tissue and mice. DAS181 efficiently inhibited viral replication in each of these models and against all tested pandemic influenza A(H1N1) strains. DAS181 treatment also protected mice from pandemic influenza A(H1N1)-induced pathogenesis. Furthermore, DAS181 antiviral activity against pandemic influenza A(H1N1) strains was comparable to that observed against seasonal influenza virus including the H274Y oseltamivir-resistant influenza virus. Conclusions: The sialidase fusion protein DAS181 exhibits potent inhibitory activity against pandemic influenza A(H1N1) viruses. As inhibition was also observed with oseltamivir-resistant IFV (H274Y), DAS181 may be active against the antigenically novel pandemic influenza A(H1N1) virus should it acquire the H274Y mutation. Based on these and previous results demonstrating DAS181 broad-spectrum anti-IFV activity, DAS181 represents a potential therapeutic agent for prevention and treatment of infections by both emerging and seasonal strains of IFV.published_or_final_versio

    The Development of Therapeutic Antibodies That Neutralize Homologous and Heterologous Genotypes of Dengue Virus Type 1

    Get PDF
    Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential

    Deletion of the Chd6 exon 12 affects motor coordination

    Get PDF
    Members of the CHD protein family play key roles in gene regulation through ATP-dependent chromatin remodeling. This is facilitated by chromodomains that bind histone tails, and by the SWI2/SNF2-like ATPase/helicase domain that remodels chromatin by moving histones. Chd6 is ubiquitously expressed in both mouse and human, with the highest levels of expression in the brain. The Chd6 gene contains 37 exons, of which exons 12-19 encode the highly conserved ATPase domain. To determine the biological role of Chd6, we generated mouse lines with a deletion of exon 12. Chd6 without exon 12 is expressed at normal levels in mice, and Chd6 Exon 12 βˆ’/βˆ’ mice are viable, fertile, and exhibit no obvious morphological or pathological phenotype. Chd6 Exon 12 βˆ’/βˆ’ mice lack coordination as revealed by sensorimotor analysis. Further behavioral testing revealed that the coordination impairment was not due to muscle weakness or bradykinesia. Histological analysis of brain morphology revealed no differences between Chd6 Exon 12 βˆ’/βˆ’ mice and wild-type (WT) controls. The location of CHD6 on human chromosome 20q12 is overlapped by the linkage map regions of several human ataxias, including autosomal recessive infantile cerebellar ataxia (SCAR6), a nonprogressive cerebrospinal ataxia. The genomic location, expression pattern, and ataxic phenotype of Chd6 Exon 12 βˆ’/βˆ’ mice indicate that mutations within CHD6 may be responsible for one of these ataxias
    • …
    corecore