16,906 research outputs found

    Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories

    Full text link
    We present a superspace formulation of the D=3, N=4,5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action, and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new super-potential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4,5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be rederived in our 3-algebra approach. All known N=4,5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie-algebra realization of symplectic 3-algebras.Comment: 37 pages, minor changes, published in PR

    Entangling two superconducting LC coherent modes via a superconducting flux qubit

    Full text link
    Based on a pure solid-state device consisting of two superconducting LC circuits coupled to a superconducting flux qubit, we propose in this paper that the maximally entangled coherent states of the two LC modes can be generated for arbitrary coherent states through flux qubit controls.Comment: 5 pages, 2 figure

    Spin and orbital angular momentum in gauge theories (II): QCD and nucleon spin structure

    Full text link
    Parallel to the construction of gauge invariant spin and orbital angular momentum for QED in paper (I) of this series, we present here an analogous but non-trivial solution for QCD. Explicitly gauge invariant spin and orbital angular momentum operators of quarks and gluons are obtained. This was previously thought to be an impossible task, and opens a more promising avenue towards the understanding of the nucleon spin structure.Comment: 3 pages, no figure; presented by F. Wang at NSTAR200

    Search for quantum dimer phases and transitions in a frustrated spin ladder

    Full text link
    A two-leg spin-1/2 ladder with diagonal interactions is investigated numerically. We focus our attention on the possibility of columnar dimer phase, which was recently predicted based on a reformulated bosonization theory. By using density matrix renormalization group technique and exact diagonalization method, we calculate columnar dimer order parameter, spin correlation on a rung, string order parameters, and scaled excitation gaps. Carefully using various finite-size scaling techniques, our results show no support for the existence of columnar dimer phase in the spin ladder under consideration.Comment: 5 pages, 4 figures. To be published in Phys. Rev.

    Magnetic field dependence of antiferromagnetic resonance in NiO

    Get PDF
    We report on measurements of magnetic field and temperature dependence of antiferromagnetic resonances in the prototypical antiferromagnet NiO. The frequencies of the magnetic resonances in the vicinity of 1 THz have been determined in the time-domain via time-resolved Faraday measurements after selective excitation by narrow-band superradiant terahertz (THz) pulses at temperatures down to 3 K and in magnetic fields up to 10 T. The measurements reveal two antiferromagnetic resonance modes, which can be distinguished by their characteristic magnetic field dependencies. The nature of the two modes is discussed by comparison to an eight-sublattice antiferromagnetic model, which includes superexchange between the next-nearest-neighbor Ni spins, magnetic dipolar interactions, cubic magneto-crystalline anisotropy, and Zeeman interaction with the external magnetic field. Our study indicates that a two-sublattice model is insufficient for the description of spin dynamics in NiO, while the magnetic-dipolar interactions and magneto-crystalline anisotropy play important roles

    The Tensor Current Divergence Equation in U(1) Gauge Theories is Free of Anomalies

    Full text link
    The possible anomaly of the tensor current divergence equation in U(1) gauge theories is calculated by means of perturbative method. It is found that the tensor current divergence equation is free of anomalies.Comment: Revtex4, 7 pages, 2 figure
    • …
    corecore