2,103 research outputs found

    The measured equation of invariance: a new concept in field computation

    Get PDF
    Computations of electromagnetic fields are based either on differential equations or on integral equations. The differential equation approach using finite difference or finite element methods results in sparse matrices, which is an advantage, but has to cover large volumes, which is a disadvantage. The integral equation approach using the method of moments (MOM) limits the mesh to the surface of the object, which is an advantage, but results in full matrices, which is a disadvantage. It is noted that the ideal case would be to reduce the finite difference type equations close to the object surface and still preserve the sparsity of the matrices. The measured equation of invariance is a new concept in field computation capable of approaching this ideal situation. The mathematics and reasonings to reach a novel computational method based on this concept are presented. It is shown that the method is robust for both convex and concave objects, is much faster than the MOM, and uses a fraction of the memory.Peer ReviewedPostprint (published version

    Measured equation of invariance: a new concept in field computations

    Get PDF
    Numerical computations of frequency domain field problems or elliptical partial differential equations may be based on differential equations or integral equations. The new concept of field computation presented in this paper is based on the postulate of the existence of linear equations of the discretized nodal values of the fields, different from the conventional equations, but leading to the same solutions. The postulated equations are local and invariant to excitation. It is shown how the equations can be determined by a sequence ofPeer ReviewedPostprint (published version

    Energy efficient cooperative coalition selection in cluster-based capillary networks for CMIMO IoT systems

    Get PDF
    The Cooperative Multiple-input-multiple-output (CMIMO) scheme has been suggested to extend the lifetime of cluster heads (CHs) in cluster-based capillary networks in Internet of Things (IoT) systems. However, the CMIMO scheme introduces extra energy overhead to cooperative devices and further reduces the lifetime of these devices. In this paper, we first articulate the problem of cooperative coalition’s selection for CMIMO scheme to extend the average battery capacity among the whole network, and then propose to apply the quantum-inspired particle swarm optimization (QPSO) to select the optimum cooperative coalitions of each hop in the routing path. Simulation results proved that the proposed QPSO-based cooperative coalition’s selection scheme could select the optimum cooperative sender and receiver devices in every hop dynamically and outperform the virtual MIMO scheme with a fixed number of cooperative devices

    Whole-genome analysis of quorum-sensing Burkholderia sp. strain A9

    Get PDF
    YesBurkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene.UM High Impact Research Grants (UM-MOHE HIR grant UM C/625/1/HIR/MOHE/CHAN/01, H-50001-A000001 and UMMOHE HIR Grant UM C/625/1/HIR/MOHE/CHAN/14/1, H-50001- A000027

    Monte Carlo Renormalization Group Analysis of Lattice ϕ4\phi^4 Model in D=3,4D=3,4

    Full text link
    We present a simple, sophisticated method to capture renormalization group flow in Monte Carlo simulation, which provides important information of critical phenomena. We applied the method to D=3,4D=3,4 lattice ϕ4\phi^4 model and obtained renormalization flow diagram which well reproduces theoretically predicted behavior of continuum ϕ4\phi^4 model. We also show that the method can be easily applied to much more complicated models, such as frustrated spin models.Comment: 13 pages, revtex, 7 figures. v1:Submitted to PRE. v2:considerably reduced redundancy of presentation. v3:final version to appear in Phys.Rev.

    The retinoic acid receptor alpha (RARA) gene is not associated with myopia, hypermetropia, and ocular biometric measures

    Get PDF
    Purpose: The Retinoic Acid Receptor Alpha (RARA) gene is a potential candidate gene for myopia due to its differential expression in animal models during experimentally induced myopia. To test for whether RARA is associated with myopia we have undertaken a case-control study assessing for associations between RARA and myopia, hypermetropia, and ocular biometric measures. Methods: A total of 802 Anglo-Celtic individuals were genotyped. Five tag single nucleotide polymorphisms (tSNPs) in RARA with an r2 of 0.8 and a minor allele frequency greater than 5% were selected for genotyping. Genotype frequencies of these 5 tSNPs were compared between individuals with emmetropia and those with myopia or hypermetropia. A quantitative analysis was also performed to assess associations with ocular biometric measures including axial length, corneal curvature and anterior chamber depth. Results: We did not identify any significant association between tSNPs in RARA with either myopia or hypermetropia as qualitative traits. Neither did we identify any significant associations of these tSNPs with the quantitative traits of axial length, corneal curvature and anterior chamber depth. Conclusions: This is the first study to assess for associations between RARA and myopia, hypermetropia, and ocular biometric measures. Our findings suggest that variations in the nucleotide sequence of RARA are not associated with myopia, hypermetropia, or ocular biometric measures in our population

    Defect and anisotropic gap induced quasi-one-dimensional modulation of local density of states in YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    Motivated by recent angle-resolved photoemission spectroscopy (ARPES) measurement that superconducting YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) exhibits a dx2y2+sd_{x^2-y^2} + s-symmetry gap, we show possible quasi-one-dimensional modulations of local density of states in YBCO. These aniostropic gap and defect induced stripe structures are most conspicuous at higher biases and arise due to the nesting effect associated with a Fermi liquid. Observation of these spectra by scanning tunneling microscopy (STM) would unify the picture among STM, ARPES, and inelastic neutron scattering for YBCO.Comment: 4 pages, 4 figure

    Mechanism of Action of Surface Immobilized Antimicrobial Peptides Against Pseudomonas aeruginosa

    Get PDF
    Bacterial colonization and biofilm development on medical devices can lead to infection. Antimicrobial peptide-coated surfaces may prevent such infections. Melimine and Mel4 are chimeric cationic peptides showing broad-spectrum antimicrobial activity once attached to biomaterials and are highly biocompatible in animal models and have been tested in Phase I and II/III human clinical trials. These peptides were covalently attached to glass using an azidobenzoic acid linker. Peptide attachment was confirmed using X-ray photoelectron spectroscopy and amino acid analysis. Mel4 when bound to glass was able to adopt a more ordered structure in the presence of bacterial membrane mimetic lipids. The ability of surface bound peptides to neutralize endotoxin was measured along with their interactions with the bacterial cytoplasmic membrane which were analyzed using DiSC(3)-5 and Sytox green, Syto-9, and PI dyes with fluorescence microscopy. Leakage of ATP and nucleic acids from cells were determined by analyzing the surrounding fluid. Attachment of the peptides resulted in increases in the percentage of nitrogen by 3.0% and 2.4%, and amino acid concentrations to 0.237 nmole and 0.298 nmole per coverslip on melimine and Mel4 coated surfaces, respectively. The immobilized peptides bound lipopolysaccharide and disrupted the cytoplasmic membrane potential of Pseudomonas aeruginosa within 15 min. Membrane depolarization was associated with a reduction in bacterial viability by 82% and 63% for coatings melimine and Mel4, respectively (p < 0.001). Disruption of membrane potential was followed by leakage of ATP from melimine (1.5 ± 0.4 nM) or Mel4 (1.3 ± 0.2 nM) coated surfaces compared to uncoated glass after 2 h (p < 0.001). Sytox green influx started after 3 h incubation with either peptide. Melimine coatings yielded 59% and Mel4 gave 36% PI stained cells after 4 h. Release of the larger molecules (DNA/RNA) commenced after 4 h for melimine (1.8 ± 0.9 times more than control; p = 0.008) and after 6 h with Mel4 (2.1 ± 0.2 times more than control; p < 0.001). The mechanism of action of surface bound melimine and Mel4 was similar to that of the peptides in solution, however, their immobilization resulted in much slower (approximately 30 times) kinetics

    Transfer-Matrix Monte Carlo Estimates of Critical Points in the Simple Cubic Ising, Planar and Heisenberg Models

    Full text link
    The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demonstrate how the statistical noise can be reduced considerably by a similarity transformation of the transfer matrix using a variational estimate of its leading eigenvector, in analogy with a common practice in various quantum Monte Carlo techniques. Here we take the two-dimensional coupled XYXY-Ising model as an example. Furthermore, we calculate interface free energies of finite three-dimensional O(nn) models, for the three cases n=1n=1, 2 and 3. Application of finite-size scaling to the numerical results yields estimates of the critical points of these three models. The statistical precision of the estimates is satisfactory for the modest amount of computer time spent
    corecore