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Abstract-Numerical computations of frequency domain field 
problems or elliptical partial differential equations may be based 
on differential equations or integral equations. The new concept 
of field computation presented in this paper is based on the pos- 
tulate of the existence of linear equations of the discretized nodal 
values of the fields, different from the conventional equations, 
but leading to the same solutions. The postulated equations are 
local and invariant to excitation. It is shown how the equations 
can be determined by a sequence of “measures.” The measured 
equations are particularly useful at the mesh boundary, where 
the finite difference methods fail. The measured equations do not 
assume the physical condition of absorption, so they are also ap- 
plicable to concave boundaries. Using the measured equations, we 
can terminate the finite difference mesh very close to the physical 
boundary and still obtain robust solutions. It will definitely make 
a great impact on the way we apply finite difference and finite 
element methods in many problems. Computational results using 
the measured equations of invariance in two and three dimensions 
are presented. 

I. INTRODUCTION 
HE numerical solution of a frequency domain elec- T tromagnetic field problem may be approached by an 

integral equation [l], [ 2 ]  or a differential equation [3], [4] 
formulation. The integral equation approach has the advantage 
of limiting the computational domain on the surface of the 
object boundary, but it results in a full matrix. The differential 
equation approach, using a finite difference or finite element 
method, results in a sparse matrix, but needs a mesh volume 
much larger than the volume of the object in order to be able 
to apply an absorbing boundary condition. The sparse matrix 
of the finite difference method could be a great computational 
advantage for the differential equation approach if the disad- 
vantage of the excessive mesh coverage does not outweigh the 
advantage. The ideal case would be to bring the mesh boundary 
of the finite difference method on to the object boundary. 
In this paper, we will show that the concept of “measured 
equation of invariance” (MEI) leads us close to such an ideal 
situation. 

11. PRIOR INVESTIGATIONS 

It is well known that solutions of linear partial differential 
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Fig. 1. Schematics of a 2-D scattering 

equations are not unique unless the boundary conditions are 
specified. The solution of an open domain equation must 
also include a radiation condition at infinity. Numerically, 
such a condition is simulated by an absorbing condition at 
a finite distance from the object boundary. The absorbing 
boundary condition may be effected by mode matching [4], 
[5] or by physical considerations [6] ,  [7 ] .  The mode matching 
techniques are global, and they result in matrices which 
relate the boundary nodal values to one another. The physical 
considerations are postulates of absorptions, which are local 
relations that preserve the sparsity of the difference equations. 
It has been assumed that if the absorbing conditions were 
imposed more rigorously, the mesh could be terminated closer 
to the object surface. Recent investigations by Kriegsman et 
al. [8] and Ramahi et al. [9] are representative of such a 
philosophy. However, the results are mixed. In general, the 
close to object absorbing conditions are not robust, and they 
are not applicable to concave surfaces. 

111. THE DIFFERENTIAL EQUATIONS 

Let us consider the simple scattering problem of Fig. 1, 
where the scatterer is a 2-D metal object. The incident field 
may either be a TE or TM wave. The differential equation to 
be solved is 

where 4(F) is the scattered field. The numerical solution of (1) 
may be found by a set of finite difference equations or finite 
element equations. Using the typical nodal geometry of Fig. 2 ,  
and assuming h to be sufficiently small, the finite difference 
equation is 

We can characterize the finite difference approximation to 
the differential equation with the following statements. 
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Fig. 2. A typical finite difference mesh point and local numbering 
- 
2 

Fig. 3 .  Orthogonal and opposite plane waves as measuring functions. 

Each finite difference equation represents a linear equation 
of a nodal value with its immediate neighbors, and the relation 
is 

find the MEI without solving the problem first, The following 
sections explain the method. 

1) invariant to the location of the node, 
2 )  invariant to the geometry of the scatterer, 
3) invariant to the field of excitation. 
The above characterizations also apply to the finite element 

V. THE MEASURE 
We shall call a particular solution, which we use to find the 

coefficients of (3). a “measuring function,” and the equation 
which results from substituting a “measuring function” in (3) equations. 

IV. THE POSTULATES 
With reference to the discretized field values of the previous 

For each node, which has 7~ - 1 immediate neighbors, there 
section, Mei advanced the following postulates [ 101. 

exists a linear relation 
7z-1 

-&Q, = 0 (3) 
1=0 

where 1, = 0 is the subscript of the particular node and 
i = 1, 2 , . . . 7 1 .  - 1 are those of the neighbors, which is 
different from the finite difference and finite element equations 
at that node. The equations will give the same solution as the 
discretized differential equation but the equations are 

1) location dependent, 
2 )  geometry specific, 
3) invariant to the field of excitation. 
Postulates 1) and 2) suggest that these equations have 

to be different from the finite difference and finite element 
equations. Postulate 3) suggests that the coefficient may be 
fvund from n,- 1 linearly independent solutions of the problem. 
Postulate 2) also suggests that the solutions used to find the 
coefficients must be specific to the geometry of the scatterer. 
The above postulates are guidelines upon which we shall 
depend to converge to a new set of mesh boundary local 
equations which stays robust near the target boundary. The 
third postulate seems to be far reaching and incredible, but it 
is really not that difficult to reason that it is essentially true. 
All it says is that the linear relation (2) is not the only one 
at each nodal point. In other words, i t  is not unique. If it 
were unique, we should be able to recover the finite different 
equation from (n  - 1) solutions obtained from ( n  - 1) different 
incident fields by substituting them back into (3). In fact, for 
all scattering problems we know of, such back substitutions do 
not give us the finite difference equation. Actually, they give 
us the measured equation of invariance. Our goal, then, is to 

a “measure.” A minimum of ‘11 - 1 measures are required to 
get a “measured equation” of 7~ nodes. 

A simple example of a measured equation is to use four 
plane waves as measuring functions on a regular five-point 
mesh as shown in Fig. 3. The measures are 

Symmetry suggests that o , ~  = a2 = a3 = uq, and since 
we may choose one coefficient arbitrary, it is convenient to 
choose a1 = 1. The solution gives 

The second-order approximation of a0 is identical to that of 
the finite difference equation in (2). This is expected because 
the above measuring functions are neither location specific 
nor geometry specific. 

A slightly different set of measured equations can be found 
by using upward plane waves only as measuring functions, 
such as shown in Fig. 4. The coefficients are now 

a1 = a4 = 1. 

In Fig. 4, we show the residuals of this measured equation 
when plane waves of arbitrary angular directions are substi- 
tuted in the equation. It is obvious that Fig. 4 is directional in 
that it is biased in favor of the upward directed waves. Here, 
again, we have demonstrated that, as far as the upward directed 
waves are concerned, the equations of (3) are not unique, and 
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where G(F/7’) is the Green’s function of (l), and k = 
1, 2, . . . , n - 1 for a nodal point having n - 1 neighbors, c is 
the contour of the scatterer, 7 is the coordinate location of the 
node, and 7’ is the coordinate location of the metron. It should 
be emphasized that the metrons are not basis functions. Their 
sole function is to generate the measured equations. So, there is 
no requirement for metrons or any linear combination of them 
to resemble the actual current density. We can use (7) and (3) 
to generate boundary equations for the finite difference mesh. X ~ I O - ~  

on the scatterer surface, called “metrons,” and generate the 
measuring functions from the integral 
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have not tried to mix it with the finite element equations, we 
have no reason to believe that they will not mix as well. It is 
frequently advantageous to use the finite difference equation 

- everywhere it is applicable and use ME1 where it is necessary, 
- - such as at the mesh boundaries. It is also found that the 

calculations are more stable if there are a few layers of finite 
difference equations between the object boundary and the mesh 
boundary. A more stringent integration procedure is needed 
when the buffer layer is reduced. Normally, robust results can 
be obtained with just two or three finite difference layers of 

analytical integration is required because the integrand of (7) 

- - means “measuring instrument.” Computationally, a metron 
current may be considered as an induced surface current 

I I I I I I I 
- - 
- - 
- - 

- 

- - 
- - 
- - 
- - 
- - 
- - 

- - buffer zone. The extreme case of zero finite difference layer 
has also been tested and appeared to be robust, although some 

- - 
- - 
- - 
- - becomes singular. 

- The term “metron” is adapted from the Greek word, which 
- 
- - 

- - 
- - due to an unknown incident field. Since the coefficients are 

-150 -100 -50 0.0 50 100 150 independent of incident fields, there is no need for us to find 
I I I I I I I 

4 P 

there are equations other than (2) which are capable of locally 
characterizing the problem and are invariant to incident fields. 

Even more directional measured equations can be obtained 
if we use the six-point mesh as shown in Fig. 5. The residuals 
of the equation for plane waves are also shown in Fig. 5. 
Indeed, the measured equation of Fig. 5 is a good radiation 
boundary condition; however, it is not geometry specific, 
i.e., the equation is independent of the scatterer geometry. 
We assert that the near fields are geometry specific, and 
the equation just discussed cannot be robust near the object 
boundary. 

VI. RIE METRONS 

field outside the cavity)? Of course, one wishes to avoid those 
cases, and that is why we choose smooth continuous currents 
as metrons, and we may also choose more metrons than we 
need and use least square to find the coefficients to overcome 
any such mishaps. 

VII. Re: CALCULATIONS 
We have tested the ME1 method on a variety of scatterer 

geometries in 2-D both for TE and TM cases. Figs. 6 and 
7 show the mesh geometry of a square conducting cylinder, 
which is illuminated by a plane wave, and the calculated 
surface current densities on the cylinder for the TE and TM 
cases, respectively. The metrons used in these calculations are 

2knl 2kT1 
Jk(2) = 1,cos r, and sin - ( I C  = 1, 2) (8) To obtain geometry specific measuring functions, we assume 

a set of surface current densities Jk(V’), (k = 1, 2, . . . , n - 1) L 
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Fig. 6. Mesh geometry and surface current densities on a square conducting 
cylinder. Comparison of results of a TE case ( H  wave) with broad-side 
incidence. 

2.50 

2.00 - 

1.50 - 

1.00 - 

OfJ0 

0.00 - - 
-0.50 - 

-1.00 

-1.50 - 

-2.00 - 

- E;C 

- 

-2.00 -1.00 0.00 1.00 2.00 

Fig. 8. Geometry and mesh of a scatterer with a cavity-like indentation. 
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Fig. 7. Mesh geometry and surface current densities on a square conducting 
cylinder. Comparison of results of a TM case ( E  wave) with broad-side 
incidence. 

I/a 

when the measured functions are generated for a six-point 
boundary node of Fig. 5. The letter 1 denotes the distance 
measured from the center of the back surface of the cylinder. 

It is noticed that the metrons are of slow spatial variation, 
which cannot possibly represent the results of Fig. 7 which 
are singular at the corners. The comparisons of the results of 
the ME1 method and MOM are shown, and the agreement is 
truly remarkable. Fig. 8 shows the mesh geometry of a concave 
scatterer with a cavity-like indentation. Fig. 9(a) and (b) shows 
the comparison of the induced surface current densities on 
the scatterer calculated by the ME1 method and by MOM for 
TM and TE cases, respectively. Again, very robust results are 
indicated. Metrons similar to (8) are used in these calculations. 
We notice that the ME1 results are slightly asymmetric, while 
the true results should be perfectly symmetric. That is because 
two of the metrons we have used are not symmetric. Since 
the measured equations of invariance are not exact due to 
discretization, one would expect some numerical errors to 
creep in. Of course, had we used only symmetrical metrons, 
we would also get perfectly symmetrical results. 

Fig. 9. The surface current densities on the scatterer of Fig. 8 for X = 1 . 8 ~  
and angle of incidence 9 = 0' as calculated by ME1 method and MOM. (a) 
TM-wave incidence, (b) TE-wave incidence. 

As a test of the ME1 method without any finite difference 
buffer, Fig. 10 shows the geometry and mesh of an elliptical 
scatterer, and Figs. 11 and 12 show the calculated results with 
zero and one finite difference buffer and their comparisons 
with those of MOM. Although a few layers of finite difference 
buffer zone do not seem to add much computational overhead 
in the 2-D case, they do make a great difference in 3-D cases. 
As more experiences are gained in the ME1 computations, 
it is expected that the importance of the buffer zone should 
diminish. 

While the above results indicate that the ME1 method and 
MOM have comparable accuracy, the need for computer time 
and memory is vastly different. For storage, the MOM requires 
N x N words of memory, yet the ME1 method needs only 
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Fig. 12. Calculated surface current densities on the conducting elliptical 
Fig, 10, 
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Mesh and geometry of an elliptical cylinder with one finite differ. cylinder using MEI with o and I finite difference buffer layers, and their 
comparisons with that of the MOM (TE wave). 
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Fig. 1 1. Calculated surface current densities on the conducting elliptical 
cylinder using ME1 with 0 and 1 finite difference buffer layers, and their 
comparisons with that of the MOM (TM wave). 

n2 x N ,  where m, = n - 1 is the number of buffer layers. 
For n = 4 and N = 100, for example, MOM requires 
six times more memory than the ME1 method, 12 times of 
N = 200, etc. The time advantage of the ME1 is equally 
dramatic. Fig. 13 shows some typical time for the cases we 
have tested, indicating that MOM time is on the order of 
N2.5  and ME1 about N1.g. For an honest comparison, the 
N in both MOM and ME1 are the number of nodal points 
on the surface of the target, i.e., the same N for MOM and 
ME1 are used even though there are more unknowns for ME1 
than for MOM. We realize that Fig. 13 is only the plot for 
relatively small N .  When N 3 m, the MOM slope must 
approach 3 and the ME1 slope must approach 2. Most of 
the computation time for the ME1 method is spent on the 
calculation of the measured equation of invariance at the mesh 
boundary. Such calculations depend on the generation of the 
measuring functions of (7), which for each nodal point requires 
the same amount of calculations for the method of moments. It 
is noted that the calculations for more than one metron do not 
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Fig. 13. Time versus AV plots of MOM and ME1 

add much overhead to the work for only one metron because 
different metrons only result in different constant multipliers of 
the Green's functions at each summation step. It is not required 
to recalculate the Green's function. It is not difficult to see that 
213 of the calculations are redundant. Therefore, for a six-point 
boundary MEI, we require twice the amount of time needed 
for MOM to fill the matrix. We believe that there is much room 
for advancement in the calculation of the measuring functions 
of (7). In the MOM research activities, we have generally 
neglected the research in integration because in the MOM, the 
computation is dominated by the matrix inversion so there has 
been little incentive to speed up the calculation of the matrix. 

In the extreme case of m = 0 and 1, the actual CPU seconds 
for results of Figs. 11 and 12 are those shown in Table I. 

The advantage of the ME1 method will be even more 
dramatic when applied to 3-D problems. 

VIII. THE COROLLARIES 

In the above calculations, we have confirmed the veracity of 
the postulates; in particular, it is demonstrated in Figs. 8 and 
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Methods TM CPU seconds TE CPU seconds 

MOM 34 58 %Jz 
ME1 ( m  = 1) 9.4 9.4 
ME1 ( m  = 0) 7.6 7.6 

The DEC 5000/200cx workstation was used for the above calculations. 
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Fig. 14. 
rectangular waveguide. (a) Top view, (b) end view, (c) mesh. 

The scattering configuration of an elliptical cylinder obstacle in a 

9 that the measured equation of invariance is definitely not 
another absorbing boundary condition since there exist both 
incoming and outgoing waves at those boundaries. It further 
suggests that the ME1 can be applied in closed regions such 
as waveguides and cavities, without extending the mesh to 
the device boundaries. In this section, we shall present a few 
corollaries of the ME1 method. 

A. Mesh Flexibility 

One of the inconveniences of the finite difference method 
is that for the five-point mesh (seven points for 3-D), the 
mesh must cross at right angles, which reduces its flexibility 
to conform to object boundaries. The ME1 method provides 
an easy way out, where mesh flexibility is needed. 

B. Utility of the Green's Functions 

By changing the Green's function in (7), which generates 
the measuring functions, we have immediately changed the 
scattering environment of the problem with no other overhead. 
As an example, we calculated the surface current densities on 

%JZ 

0- 0.1 0.2 0.3 0.4 

Ila 

(b) 

Fig. 15. Surface current density around the perimeter of the elliptical post 
for X = 1 . 5 ~  for two values of the diameter 2d ,  = d, = d compared to the 
MOM. (a) d = 0.04a, (b) d = 0.16a. 

an elliptical post in a rectangular waveguide illuminated by 
a TEol incident wave. The scattering configuration is shown 
in Fig. 14. The novelty of this calculation is that the only 
difference between it and the free space scattering calculation 
is the Green's function. It is noticed that the mesh in Fig. 
14 conforms only to the scatterer, but not to the waveguide. 
The conventional finite difference or finite element methods 
would require a mesh to conform to both the object and device 
boundaries, which requires a demanding programming effort. 
The comparison of the ME1 results for the surface current 
densities with the MOM results are shown in Fig. 15, and 
the comparisons of S11 of ME1 calculations to those of the 
variational results are shown in Fig. 16. 

C. Mesh Umbilical 
An interesting case is posed by the scattering of waves 

by multiple bodies when we use the ME1 method. In that 
case, the natural thing to do is to use metron pairs in finding 
the boundary MEI. However, after the boundary equations 
are found, the equations between one object boundary and 
its mesh boundary appear to be self-consistent. That would 
lead to an illogical conclusion that the current on one body 
can be obtained independently of that on the other. The 
truth of the matter is that in any scattering configuration, 
we are not allowed to use disconnected mesh groups. For a 
multibody configuration, the mesh groups must be connected 
by mesh umbilicals. The charge densities on a pair of coupled 
microstrip lines have been calculated as an illustration. In 
Fig. 17, the strips and mesh configuration are shown, and 
Fig. 18 shows the charge distribution on the grounded middle 
strip. The errors are the differences between the results of 
a calculation with a full mesh and one with only umbilical 
connections. The comparisons of the resulting capacitances 
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Fig. 16. Reflection coefficient for an elliptical post of diameter 
2 d ,  = d ,  = d, placed at the center of the waveguide ( h  = a / 2 ) ,  
for two different values of A, compared to the variational result in [14]. 
(a) Magnitude, (b) phase. 
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Fig. 17. 
strips above a ground plane. 

with those of the spectral domain are shown in the table with 
Fig. 18, and they are very close. 

Two mesh groups connected by mesh umbilicals for a pair of parallel 

Ix. THE EXTENSION TO 3-D 
The extension of the ME1 method of 3-D is conceptually 

immediate, even though the effort in programming is greatly 
increased. In this paper, we shall only give a few representative 
results and leave the details of computations to separate papers. 
Figs. 19 and 20 are the computational configurations and 
results of a tape dipole and a sheet scatterer, respectively. 
Fig. 18 is significant in that it shows that the ME1 method 
is also robust in solving antenna problems, where the source 
is a “delta generator” [ I  I]. It is noticed that this computation 
also includes the transverse profile of the current densities 

Umbilical Mesh 2 537 3 478 -1 089 
Full Mesh 2546 3 493 -1 093 
Spectral Domain 2 571 3 456 
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Fig. 18. Capacitances, charge densities (on middle conductor), and errors of 
charge densities for the pair of parallel strips of Fig. 16. (H = 18, S = 22, 
w = 18.) 
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Fig. 19. A flat strip dipole antenna and surface current densities as it is 
driven by a delta generator. 

of the flat dipole, which is frequently “assumed” in the 
moment calculations [12]. The results of the radar cross section 
calculated from the current density of Fig. 20 of the card 
scatterer also compares very favorably with that of the MOM 
result given by Tsai [13]. 

x. THE IMPACT 

The impact of the concept of measured equations of invari- 
ance on electromagnetic field computation is quite evident. 
It compels us to reconsider the traditional methods of field 
computation, such as finite difference, finite element, and 
the method of moments. Indeed, it should have significant 
influences on all field computations, where elliptical partial 
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differential equations are involved. The advantages in com- 

traditional method such as those demonstrated in this paper are 
already quite significant, but we feel it is Still a beginning. For 
instance, in the MOM approach, the greatest consumer of CPU 
time is the calculation of the inversion of a large full matrix; 
in the ME1 method, the most demanding part is the calculation 
of the matrix elements. lt should be noted that each measured 

putational time and memory of the ME1 method Over the 

equation of invariance is an independent calculation, so the 
method will greatly benefit from the future MPC (massively 
parallel computation) systems. We should expect even greater 
impact in the reduction of time and memory as more research 
is done on this new method. 
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