13 research outputs found

    Large‐scale changes in macrobenthic biodiversity driven by mangrove afforestation

    Get PDF
    1. Large- scale anthropogenic mangroves have been constructed in coastal regions worldwide but our understanding of their ecological effects is limited. In particu-lar, the question of whether and how anthropogenic mangroves influence biodi-versity patterns remains elusive.2. Here, we investigated the influence of large-scale anthropogenic mangroves on biodiversity patterns of mangrove macrobenthos. Specifically, we measure and seek to explain differences in species richness, abundance, assemblage composi-tion and distance-decay effect before and after the construction of anthropo-genic mangroves.3. We surveyed assemblages of gastropod, bivalve and crab species over a wide latitudinal extent (24–28°N) in subtropical China. For each, we calculated species richness, abundance, assemblage composition and distance-decay relationship before and after the construction of anthropogenic mangroves.4. After the large-scale anthropogenic mangroves, we found species richness of gas-tropods, bivalves and crabs increased by 23.81%, 100% and 20%, respectively. The distance-decay effects of gastropods and bivalves decreased by 25% and 91.43%, while that of crabs remained virtually unchanged, which mediated by in-creased dispersal rate of macrobenthos. With mangrove plantation, compositional similarity of crab and bivalve assemblages increased by 28.57% and 38.46%, sug-gesting that large-scale monospecific planting exacerbate biotic homogenization. Altogether, these results indicate that large-scale anthropogenic habitats increase the diversity of mangrove macrobenthos and change taxonomic compositions by reducing distance-decay effects and increasing dispersal rate of macrobenthos.5. Synthesis and applications. We emphasize that afforestation of coastal wetlands can drive major changes in benthonic communities. Monitoring and assessing the ecological effects of the anthropogenic habitats for the presence of functional faunas will be important in determining the future coastal restoration and main-taining economic aquaculture. Quantifying those effects in terms of regional bio-diversity composition will contribute to the management of coastal restoration to be based upon macroevidence rather than a one-sided local perspective.info:eu-repo/semantics/publishedVersio

    Comparative transcriptome and metabolome analysis revealed diversity in the response of resistant and susceptible rose (Rosa hybrida) varieties to Marssonina rosae

    Get PDF
    Rose black spot disease caused by Marssonina rosae is among the most destructive diseases that affects the outdoor cultivation and production of roses; however, the molecular mechanisms underlying the defensive response of roses to M. rosae have not been clarified. To investigate the diversity of response to M. rosae in resistant and susceptible rose varieties, we performed transcriptome and metabolome analyses of resistant (KT) and susceptible (FG) rose varieties and identified differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in response to M. rosae at different time points. In response to M. rosae, DEGs and DAMs were mainly upregulated compared to the control and transcription factors were concentrated in the WRKY and AP2/ERF families. Gene Ontology analysis showed that the DEGs of FG were mainly enriched in biological processes, such as the abscisic acid-activated signaling pathway, cell wall, and defense response, whereas the DEGs of KT were mainly enriched in Golgi-mediated vesicle transport processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEGs of both varieties were concentrated in plant–pathogen interactions, plant hormone signal transduction, and mitogen-activated protein kinase signaling pathways, with the greatest number of DEGs associated with brassinosteroid (BR) in the plant hormone signal transduction pathway. The reliability of the transcriptome results was verified by qRT-PCR. DAMs of KT were significantly enriched in the butanoate metabolism pathway, whereas DAMs of FG were significantly enriched in BR biosynthesis, glucosinolate biosynthesis, and tryptophan metabolism. Moreover, the DAMs in these pathways were significantly positively correlated with the DEGs. Disease symptoms were aggravated when FG leaves were inoculated with M. rosae after 24-epibrassinolide treatment, indicating that the response of FG to M. rosae involves the BR signaling pathway. Our results provide new insights into the molecular mechanisms underlying rose response to M. rosae and lay a theoretical foundation for formulating rose black spot prevention and control strategies and cultivating resistant varieties

    Single cell-type transcriptome profiling reveals genes that promote nitrogen fixation in the infected and uninfected cells of legume nodules

    Get PDF
    2 Pags.- 1 Fig. © 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use,distribution and reproduction in any medium, provided the original work is properly cited.Excessive application of nitrogen fertilizers has inevitably resultedin environmental problems. The symbiotic nitrogen fixation (SNF) that occurs in the root nodules of leguminous plants provides asustainable source of reduced nitrogen in agricultural ecosystems. More than 200 genes have been reported to regulate SNF, including rhizobial infection, nodule organogenesis and senescence (Royet al., 2020). Mature nodules consist mainly of twocell types: infected cells (IC) that contain nitrogen-fixing bac-teroids and uninfected cells (UC) that mediate active metabolismand nutrient transport. Although it is well known that SNFrequires functional specialization, the specific genes responsiblefor transcriptional regulation and carbon/nitrogen metabolismand transport in IC and UC remain largely unexplored.Single-cell transcriptomics has emerged as a powerful tech-nique for investigating spatiotemporal patterns of gene expression.This work was supported by the National Natural Science Foundation of China (31870220, 32000192), the China Post-doctoral Science Foundation (2020M680103), Fundamental Research Funds for the Central Universities 2662020SKPY007 and MCIN/AEI/10.13039/501100011033 (grant PID2020-113985GB-I00)Peer reviewe

    Reduces distance-decay effect via monospecific mangrove afforestation increase macrobenthic diversity and biomass

    No full text
    Anthropogenic causes are overtaking natural factors to reshape patterns of biodiversity and ecosystem functioning. Mangrove afforestation aimed at reversing losses of mangroves has been conducted worldwide for several decades. However, how afforestation influences the link between ecological processes that shape community diversity and the consequent effects on ecosystem functions such as biomass production is less well known. Here we used data collected before and after mangrove planting to examine the effects of afforestation on molluscan species richness and biomass production by testing the changes in species richness, compositional similarities, distance-decay effects, and metacommunity mechanisms (i.e., species sorting, patch dynamics, mass effects and neutral dynamics) across a regional scale of 480 km (23–27 °N) in southeast Chinese coasts. Additionally, we further detected the impact of landscape configuration caused by different intensities of afforestation on the mollusc community. After the mangrove afforestation, molluscan species richness increased by 17 species for every additional anthropogenic mangrove habitat. The increase in species richness was mediated by reducing distance-decay effects. This result was more pronounced with patch dynamics and species sorting than with neutral dynamics or mass effects. We also found that the relative importance of the four metacommunity mechanisms varies among landscape configurations. Moreover, the increase in species richness via the afforestation indeed leads to a concomitant increase in benthic molluscan biomass production. We highlight the importance of considering the effects of anthropogenic changes on the relationship between biodiversity and ecosystem functioning in a pluralistic way that considers both the multiple ecological processes that shape community diversity and productivity simultaneously in naturally assembled communities. Quantifying those effects in terms of metacommunity mechanisms enables management decisions about coastal restoration to be based upon ecological mechanisms rather than wishful thinking or superficial appearance

    Extreme cold events reduce the stability of mangrove soil mollusc community biomass in the context of climate impact

    No full text
    The frequency and intensity of climate extreme events are expected to increase with global warming in the future. Climate extreme events, such as an extreme cold event (ECE) will continue to influence the stability of soil fauna community biomass, since climate changes often cause a shift in community compositions and structures (e.g. biomass). Few studies, however, have addressed the effects of climate extreme events on the stability of soil fauna community biomass. A field investigation was conducted from 2007 to 2010 to assess the influence of an ECE on the biomass stability of the soil mollusc community across four mangrove wetlands (∼450 km) in South China. Distance-decay and time-decay were used to test the spatiotemporal dynamics of the community biomass. Network analysis and null model were performed to detect the importance of competitive interactions in shaping the stability of the soil mollusc community biomass. The ECE reduced the biomass of the soil mollusc community but increased the complexity of the spatiotemporal patterns of the community biomass. The ECE increased divergent temporal succession and spatial segregation in the soil mollusc community biomass, reflecting the spatiotemporal dynamics of the soil mollusc community biomass influenced by the ECE. Importantly, the ECE decreased the biomass stability of the soil mollusc community by an average of 34.17%. An increase in the modularity of an interactive network (by 75%) and a rise in the intensity of species competition were found after the ECE, reflecting that the ECE enhanced the competitive interactions of the soil mollusc community. The changes in the biomass stability of the soil mollusc community potentially impact their ability to provide ecosystem functions and services such as food production and carbon sequestration for humans. In general, these findings provide valuable ecological insights concerning the effects of climate extremes on the stability properties of ecological soil communities, thereby providing potential applications for soil management and predicting climate changes

    Thoughts on the Present Situation of the Development of Rural Animal Husbandry and Its Relationship with the Construction of Ecological Agriculture and the Revitalization of Rural Industry

    No full text
    After several rounds of phased ups and downs of development, rural animal husbandry finally presents a shrinking and depressed development situation under the comprehensive action of the failure of transformation and upgrading and the increasing production costs and breeding risks. Actively exploring and guiding the healthy and sound development of rural animal husbandry is not only an important measure to promote the construction of ecological agriculture, but also the main starting point to realize the revitalization of rural industry. This paper analyzes the present situation of the development of rural animal husbandry in recent years, the influence of animal husbandry on the construction of ecological agriculture and the revitalization of rural industry, and puts forward the corresponding measures, in order to promote the steady and efficient development of animal husbandry in the grand strategy of revitalizing rural industry

    DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways.

    No full text
    Exosomal microRNAs (miRNAs) have been recently shown to play vital regulatory and communication roles in cancers. In this study, we showed that the expression levels of miR-652-5p in tumour tissues and serum samples of oesophageal squamous cell carcinoma (OSCC) patients were lower compared to non-tumorous tissues and serum samples from healthy subjects, respectively. Decreased expression of miR-652-5p was correlated with TNM stages, lymph node metastasis, and short overall survival (OS). More frequent CpG sites hypermethylation in the upstream of miR-652-5p was found in OSCC tissues compared to adjacent normal tissues. Subsequently, miR-652-5p downregulation promoted the proliferation and metastasis of OSCC, and regulated cell cycle both in cells and in vivo. The dual-luciferase reporter assay confirmed that poly (ADP-ribose) glycohydrolase (PARG) and vascular endothelial growth factor A (VEGFA) were the direct targets of miR-652-5p. Moreover, the delivery of miR-652-5p agomir suppressed tumour growth and metastasis, and inhibited the protein expressions of PARG and VEGFA in nude mice. Taken together, our findings provide novel insight into the molecular mechanism underlying OSCC pathogenesis

    Dietary Se-Enriched <i>Cardamine enshiensis</i> Supplementation Alleviates Transport-Stress-Induced Body Weight Loss, Anti-Oxidative Capacity and Meat Quality Impairments of Broilers

    No full text
    The aim of this experiment was to explore the effects of a new selenium (Se) source from Se-enriched Cardamine enshiensis (SeCe) on body weight loss, anti-oxidative capacity and meat quality of broilers under transport stress. A total of 240 one-day-old ROSS 308 broilers were allotted into four treatments with six replicate cages and 10 birds per cage using a 2 × 2 factorial design. The four groups were as follows: (1) Na2SeO3-NTS group, dietary 0.3 mg/kg Se from Na2SeO3 without transport stress, (2) SeCe-NTS group, dietary 0.3 mg/kg Se from SeCe without transport stress, (3) Na2SeO3-TS group, dietary 0.3 mg/kg Se from Na2SeO3 with transport stress, and (4) SeCe-TS group, dietary 0.3 mg/kg Se from SeCe with transport stress. After a 42 d feeding period, the broilers were transported by a lorry or kept in the original cages for 3 h, respectively. The results showed that dietary SeCe supplementation alleviated transport-stress-induced body weight loss and hepatomegaly of the broilers compared with the broilers fed Na2SeO3 diets (p p p 2SeO3, dietary SeCe supplementation alleviates transport-stress-induced body weight loss, anti-oxidative capacity and meat quality impairments of broilers

    DataSheet_1_Comparative transcriptome and metabolome analysis revealed diversity in the response of resistant and susceptible rose (Rosa hybrida) varieties to Marssonina rosae.pdf

    No full text
    Rose black spot disease caused by Marssonina rosae is among the most destructive diseases that affects the outdoor cultivation and production of roses; however, the molecular mechanisms underlying the defensive response of roses to M. rosae have not been clarified. To investigate the diversity of response to M. rosae in resistant and susceptible rose varieties, we performed transcriptome and metabolome analyses of resistant (KT) and susceptible (FG) rose varieties and identified differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in response to M. rosae at different time points. In response to M. rosae, DEGs and DAMs were mainly upregulated compared to the control and transcription factors were concentrated in the WRKY and AP2/ERF families. Gene Ontology analysis showed that the DEGs of FG were mainly enriched in biological processes, such as the abscisic acid-activated signaling pathway, cell wall, and defense response, whereas the DEGs of KT were mainly enriched in Golgi-mediated vesicle transport processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEGs of both varieties were concentrated in plant–pathogen interactions, plant hormone signal transduction, and mitogen-activated protein kinase signaling pathways, with the greatest number of DEGs associated with brassinosteroid (BR) in the plant hormone signal transduction pathway. The reliability of the transcriptome results was verified by qRT-PCR. DAMs of KT were significantly enriched in the butanoate metabolism pathway, whereas DAMs of FG were significantly enriched in BR biosynthesis, glucosinolate biosynthesis, and tryptophan metabolism. Moreover, the DAMs in these pathways were significantly positively correlated with the DEGs. Disease symptoms were aggravated when FG leaves were inoculated with M. rosae after 24-epibrassinolide treatment, indicating that the response of FG to M. rosae involves the BR signaling pathway. Our results provide new insights into the molecular mechanisms underlying rose response to M. rosae and lay a theoretical foundation for formulating rose black spot prevention and control strategies and cultivating resistant varieties.</p
    corecore