35 research outputs found

    Discovery of N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives as anti-HIV-1 agents

    Get PDF
    The discovery and development of novel inhibitors with activity against variants of human immunodeficiency virus type 1 (HIV-1) is pivotal for overcoming treatment failure. As our ongoing work on research of anti-HIV-1 inhibitors, 32 N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives were prepared by introduction of the hydrazone fragments on the N-arylsulfonyl-3-acylindolyl skeleton and preliminarily screened in vitro as HIV-1 inhibitors for the first time. Among of all the reported analogues, eight compounds exhibited significant anti-HIV-1 activity, especially N-(3-nitro)phenylsulfonyl-3- acetylindole benzoyl hydrazone (18) and N-(3-nitro)phenylsulfonyl-3-acetyl-6-methylindole benzoyl hydrazone (23) displayed the most potent anti-HIV-1 activity with EC50 values of 0.26 and 0.31 μg/mL, and TI values of >769.23 and >645.16, respectively. It is noteworthy that introduction of R3 as the methyl group and R2 as the hydrogen group could result in more potent compounds. This suggested that introduction of R3 as the methyl group could be taken into account for further preparation of these kinds of compounds as anti-HIV-1 agents

    Electrical Characteristics of Diamond MOSFET with 2DHG on a Heteroepitaxial Diamond Substrate

    No full text
    In this work, hydrogen-terminated diamond (H-diamond) metal-oxide-semiconductor field-effect-transistors (MOSFETs) on a heteroepitaxial diamond substrate with an Al2O3 dielectric and a passivation layer were characterized. The full-width at half maximum value of the diamond (004) X-ray rocking curve was 205.9 arcsec. The maximum output current density and transconductance of the MOSFET were 172 mA/mm and 10.4 mS/mm, respectively. The effect of a low-temperature annealing process on electrical properties was also investigated. After the annealing process in N2 atmosphere, the threshold voltage (Vth) and flat-band voltage (VFB) shifts to negative direction due to loss of negative charges. After annealing at 423 K for 3 min, the maximum value of hole field effective mobility (μeff) increases by 27% at Vth − VGS = 2 V. The results, which are not inferior to those based on homoepitaxial diamond, promote the application of heteroepitaxial diamond in the field of electronic devices

    Piezoelectric Materials: Properties, Advancements, and Design Strategies for High-Temperature Applications

    No full text
    Piezoelectronics, as an efficient approach for energy conversion and sensing, have a far-reaching influence on energy harvesting, precise instruments, sensing, health monitoring and so on. A majority of the previous works on piezoelectronics concentrated on the materials that are applied at close to room temperatures. However, there is inadequate research on the materials for high-temperature piezoelectric applications, yet they also have important applications in the critical equipment of aeroengines and nuclear reactors in harsh and high-temperature conditions. In this review, we briefly introduce fundamental knowledge about the piezoelectric effect, and emphatically elucidate high-temperature piezoelectrics, involving: the typical piezoelectric materials operated in high temperatures, and the applications, limiting factors, prospects and challenges of piezoelectricity at high temperatures

    Design and Synthesis of Novel N-Arylsulfonyl-3-(2-yl-ethanone)-6-methylindole Derivatives as Inhibitors of HIV-1 Replication

    No full text
    Seven novel N-arylsulfonyl-3-(2-yl-ethanone)-6-methylindole derivatives 4a–f and 6 were readily synthesized and have been identified as inhibitors of human immunodeficiency virus type-1 (HIV-1) replication. Initial biological studies indicated that among these derivatives, N-(p-ethyl)phenylsulfonyl-3-[2-morpholinoethanone]-6-methylindole (4f) and N-(p-ethyl)phenylsulfonyl-3-[2-(5-phenyl-1,3,4-oxadiazole-2-yl-thio)ethanone]-6-methylindole (6) showed the most promising activity against HIV-1 replication. The effective concentration (EC50) and therapeutic index (TI) values of 4f and 6 were 9.42/4.62 μM, and >49.77/66.95, respectively. The cytotoxicity of these compounds has also been assessed. No significant cytotoxicities were found for any of these compounds

    Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass

    No full text
    Komagataeibacter xylinus ATCC 23770 was statically cultivated in eight culture media based on different carbon sources, viz. seven biomass‐derived sugars and one sugar mixture. The productivity and quality of the bacterial nanocellulose (BNC) produced in the different media were compared. Highest volumetric productivity, yield on consumed sugar, viscometric degree of polymerization (DPv, 4350–4400) and thermal stability were achieved using media based on glucose or maltose. Growth in media based on xylose, mannose or galactose resulted in lower volumetric productivity and DPv, but in larger fibril diameter and higher crystallinity (76–78%). Growth in medium based on a synthetic sugar mixture resembling the composition of a lignocellulosic hydrolysate promoted BNC productivity and yield, but decreased fibril diameter, DPv, crystallinity and thermal stability. This work shows that volumetric productivity, yield and properties of BNC are highly affected by the carbon source, and indicates how industrially relevant sugar mixtures would affect these characteristics.Bio4Energ

    Discovery of N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives as anti-HIV-1 agents

    Get PDF
    The discovery and development of novel inhibitors with activity against variants of human immunodeficiency virus type 1 (HIV-1) is pivotal for overcoming treatment failure. As our ongoing work on research of anti-HIV-1 inhibitors, 32 N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives were prepared by introduction of the hydrazone fragments on the N-arylsulfonyl-3-acylindolyl skeleton and preliminarily screened in vitro as HIV-1 inhibitors for the first time. Among of all the reported analogues, eight compounds exhibited significant anti-HIV-1 activity, especially N-(3-nitro)phenylsulfonyl-3-acetylindole benzoyl hydrazone (18) and N-(3-nitro)phenylsulfonyl-3-acetyl-6-methylindole benzoyl hydrazone (23) displayed the most potent anti-HIV-1 activity with EC50 values of 0.26 and 0.31 μg/mL, and TI values of >769.23 and >645.16, respectively. It is noteworthy that introduction of R3 as the methyl group and R2 as the hydrogen group could result in more potent compounds. This suggested that introduction of R3 as the methyl group could be taken into account for further preparation of these kinds of compounds as anti-HIV-1 agents

    Synthesis and in vitro anti-HIV-1 evaluation of some N-arylsulfonyl-3-formylindoles

    Get PDF
    As our ongoing work on research of anti-HIV-1 inhibitors, fifteen N-arylsulfonyl-3-formylindoles (3a-o) were designed and prepared through two step synthetic route. Firstly, 3-formylindoles (2a-c) were synthesized via the Vilsmeier-Haack reaction. Subsequently, treatment of 2a-c with the appropriate arylsulfonyl chlorides led to the corresponding target compounds in excellent yields. All analogues were also preliminary evaluated in vitro for their inhibitory activity against HIV-1 replication. Among of all the reported analogues, three compounds 3c, 3g and 3i displayed significant anti-HIV-1 activity, with EC50 values of 9.57, 11.04 and 5.02 μM, and TI values of 31.89, 13.79 and 81.69, respectively. N-m-nitrophenylsulfonyl-3-formylindole (3c) and N-m-nitrophenylsulfonyl-6-methyl-3-formylindole (3i) especially exhibited the best promising anti-HIV-1 activity. In addition, it demonstrated that insertion of a methyl group at the C-6 position of the indolyl ring and a nitro group at the meta position of the arylsulfonyl ring, as in compound 3i, resulted in both low cytotoxicity (CC50= 410.41 μM) and good antiviral activity

    Fabrication of a Micron-Scale Three-Dimensional Single Crystal Diamond Channel Using a Micro-Jet Water-Assisted Laser

    No full text
    Two types of a trench with conventional vertical and new reverse-V-shaped cross-sections were fabricated on single crystal diamond (SCD) substrate using a micro-jet water-assisted laser. In addition, a microwave plasma chemical vapor deposition device was used to produce multiple micrometer-sized channels using the epitaxial lateral overgrowth technique. Raman and SEM methods were applied to analyze both types of growth layer characterization. The hollowness of the microchannels was measured using an optical microscope. According to the findings, the epitaxial lateral overgrowth layer of the novel reverse-V-shaped trench produced improved SCD surface morphology and crystal quality

    Bioconversion of waste fiber sludge to bacterial nanocellulose and use for reinforcement of CTMP paper sheets

    No full text
    Utilization of bacterial nanocellulose (BNC) for large-scale applications is restricted by low productivity in static cultures and by the high cost of the medium. Fiber sludge, a waste stream from pulp and paper mills, was enzymatically hydrolyzed to sugar, which was used for the production of BNC by the submerged cultivation of Komagataeibacter xylinus. Compared with a synthetic glucose-based medium, the productivity of purified BNC from the fiber sludge hydrolysate using shake-flasks was enhanced from 0.11 to 0.17 g/(L x d), although the average viscometric degree of polymerization (DPv) decreased from 6760 to 6050. The cultivation conditions used in stirred-tank reactors (STRs), including the stirring speed, the airflow, and the pH, were also investigated. Using STRs, the BNC productivity in fiber-sludge medium was increased to 0.32 g/(L x d) and the DPv was increased to 6650. BNC produced from the fiber sludge hydrolysate was used as an additive in papermaking based on the chemithermomechanical pulp (CTMP) of birch. The introduction of BNC resulted in a significant enhancement of the mechanical strength of the paper sheets. With 10% (w/w) BNC in the CTMP/BNC mixture, the tear resistance was enhanced by 140%. SEM images showed that the BNC cross-linked and covered the surface of the CTMP fibers, resulting in enhanced mechanical strength.Bio4Energ
    corecore