3,237 research outputs found

    Tensegrity and mechanoregulation: from skeleton to cytoskeleton

    Get PDF
    AbstractObjective: To elucidate how mechanical stresses that are applied to the whole organism are transmitted to individual cells and transduced into a biochemical response.Design: In this article, we describe fundamental design principles that are used to stabilize the musculoskeletal system at many different size scales and show that these design features are embodied in one particular form of architecture that is known as tensegrity.Results: Tensegrity structures are characterized by use of continuous tension and local compression; architecture, prestress (internal stress prior to application of external force), and triangulation play the most critical roles in terms of determining their mechanical stability. In living organisms, use of a hierarchy of tensegrity networks both optimizes structural efficiency and provides a mechanism to mechanically couple the parts with the whole: mechanical stresses applied at the macroscale result in structural rearrangements at the cell and molecular level.Conclusion: Due to use of tensegrity architecture, mechanical stress is concentrated and focused on signal transducing molecules that physically associate with cell surface molecules that anchor cells to extracellular matrix, such as integrins, and with load-bearing elements within the internal cytoskeleton and nucleus. Mechanochemical transduction may then proceed through local stress-dependent changes in molecular mechanics, thermodynamics, and kinetics within the cell. In this manner, the entire cellular response to stress may be orchestrated and tuned by altering the prestress in the cell, just as changing muscular tone can alter mechanical stability and structural coordination throughout the whole musculoskeletal system

    A Memetic Algorithm Configured Via a Problem Solving Environment for the Hamiltonian Cycle Problems

    Get PDF
    Algorithm Development Environment for Permutation-based problems (ADEP) is a software environment for configuring meta-heuristics for solving combinatorial optimization problems. This paper describes the key features of ADEP and how the environment was used to generate a Memetic Algorithm (MA) solution for Hamiltonian Cycle Problems (HCP). The effectiveness of the MA algorithm is demonstrated through computer simulations and its performance is compared with backtracking and other heuristic techniques such as Simulated Annealing, Tabu Search, and Ant Colony Optimization

    Injection of electron beams into two laser wakefields and generation of electron rings

    Get PDF
    Mutual injection of electron beams into two laser plasma wakefields was observed experimentally when driving laser pulses interfered in plasma at a small crossing angle and were slightly relatively delayed, approximately by one pulse duration. Particle-in-cell simulations revealed that the mutual injection was sensitive to the spatial overlap of the laser pulses, which therefore could be used to control the mutual injection. The dual synchronized, femtosecond electron beams are potentially useful for pump-probe experiments in ultrafast science. In addition, out-of-axis ring-shaped electron beams were detected in both experiments and simulations

    Exploratory Chandra Observations of the Three Highest Redshift Quasars Known

    Full text link
    We report on exploratory Chandra observations of the three highest redshift quasars known (z = 5.82, 5.99, and 6.28), all found in the Sloan Digital Sky Survey. These data, combined with a previous XMM-Newton observation of a z = 5.74 quasar, form a complete set of color-selected, z > 5.7 quasars. X-ray emission is detected from all of the quasars at levels that indicate that the X-ray to optical flux ratios of z ~ 6 optically selected quasars are similar to those of lower redshift quasars. The observations demonstrate that it will be feasible to obtain quality X-ray spectra of z ~ 6 quasars with current and future X-ray missions.Comment: 15 pages, ApJL, in press; small revisions to address referee Comment

    Nonlinear optics in relativistic plasmas

    Full text link
    We discuss various nonlinear optical processes that occur as an intense laser propagates through a relativistic plasma. These include the experimental observations of electron acceleration driven by laser-wakefield generation, relativistic self-focusing, waveguide formation and laser self-channeling. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87450/2/103_1.pd

    Strong interfacial exchange field in the graphene/EuS heterostructure

    Full text link
    Exploiting 2D materials for spintronic applications can potentially realize next-generation devices featuring low-power consumption and quantum operation capability. The magnetic exchange field (MEF) induced by an adjacent magnetic insulator enables efficient control of local spin generation and spin modulation in 2D devices without compromising the delicate material structures. Using graphene as a prototypical 2D system, we demonstrate that its coupling to the model magnetic insulator (EuS) produces a substantial MEF (> 14 T) with potential to reach hundreds of Tesla, which leads to orders-of-magnitude enhancement in the spin signal originated from Zeeman spin-Hall effect. Furthermore, the new ferromagnetic ground state of Dirac electrons resulting from the strong MEF may give rise to quantized spin-polarized edge transport. The MEF effect shown in our graphene/EuS devices therefore provides a key functionality for future spin logic and memory devices based on emerging 2D materials in classical and quantum information processing

    Mir-434-5p mediates skin whitening and lightening

    Get PDF
    Utilization of gene silencing effectors, such as microRNA (miRNA) and small hairpin RNA (shRNA), provides a powerful new strategy for human skin care in vivo, particularly for hyperpigmentation treatment and aging prevention. In this study, tyrosinase (Tyr), the rate-limiting enzyme of melanin (black pigment) biosynthesis, was served as a target for treatment of hyperpigmentation in mouse and human skins. There are over 54 native microRNA capable of silencing human tyrosinase for skin whitening and lightening. To this, we have designed a mir-434-5p homologue and used it to successfully demonstrate the feasibility of miRNA-mediated skin whitening and lightening in vitro and in vivo. Under the same experimental condition in the trials, Pol-II-directed intronic mir-434-5p expression did not cause any detectable sign of cytotoxicity, whereas siRNAs targeting the same sequence often induced certain nonspecific mRNA degradation as previously reported. Because the intronic miRNA-mediated gene silencing pathway is tightly regulated by multiple intracellular surveillance systems, including Pol-II transcription, RNA splicing, exosomal digestion and nonsense-mediated RNA decay (NMD), the current findings underscore the fact that intronic miRNA agents, such as manually re-designed mir-434-5p homologues, are effective, target-specific and safe to be used for skin whitening without any detectable cytotoxic effect. Given that the human skins also express a variety of other native miRNAs, we may re-design these miRNAs based on their individual functions for skin care, which may provide significant insights into areas of opportunity for new cosmetic and/or therapeutical applications

    Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    Get PDF
    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance

    Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere

    Get PDF
    The Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) on board the Polar spacecraft observed 75 energetic particle events in 1996 while the satellite was at apogee. All of these events were associated with a decrease in the magnitude of the local magnetic field measured by the Magnetic Field Experiment (MFE) on Polar. These new events showed several unusual features: (1) They were detected in the dayside polar cusp near the apogee of Polar with about 79% of the total events in the afternoonside and 21% in the morningside; (2) an individual event could last for hours; (3) the measured helium ion had energies up to and many times in excess of 2.4 MeV; (4) the intensity of 1–200 KeV/e helium was anticorrelated with the magnitude of the local geomagnetic field but correlated with the turbulent magnetic energy density; (5) the events were associated with an enhancement of the low-frequency magnetic noise, the spectrum of which typically extends from a few hertz to a few hundreds of hertz as measured by the Plasma Wave Instrument (PWI) on Polar; and (6) a seasonal variation was found for the occurrence rate of the events with a maximum in September. These characterized a new phenomenon which we are calling cusp energetic particle (CEP) events. The observed high charge state of helium and oxygen ions in the CEP events indicates a solar source for these particles. Furthermore, the measured 0.52–1.15 MeV helium flux was proportional to the difference between the maximum and the minimum magnetic field in the event. A possible explanation is that the energetic helium ions are energized from lower energy helium by a local acceleration mechanism associated with the high-altitude dayside cusp. These observations represent a potential discovery of a major acceleration region of the magnetosphere

    Experimental observation of nonlinear Thomson scattering

    Get PDF
    A century ago, J. J. Thomson showed that the scattering of low-intensity light by electrons was a linear process (i.e., the scattered light frequency was identical to that of the incident light) and that light's magnetic field played no role. Today, with the recent invention of ultra-high-peak-power lasers it is now possible to create a sufficient photon density to study Thomson scattering in the relativistic regime. With increasing light intensity, electrons quiver during the scattering process with increasing velocity, approaching the speed of light when the laser intensity approaches 10^18 W/cm^2. In this limit, the effect of light's magnetic field on electron motion should become comparable to that of its electric field, and the electron mass should increase because of the relativistic correction. Consequently, electrons in such high fields are predicted to quiver nonlinearly, moving in figure-eight patterns, rather than in straight lines, and thus to radiate photons at harmonics of the frequency of the incident laser light, with each harmonic having its own unique angular distribution. In this letter, we report the first ever direct experimental confirmation of these predictions, a topic that has previously been referred to as nonlinear Thomson scattering. Extension of these results to coherent relativistic harmonic generation may eventually lead to novel table-top x-ray sources.Comment: including 4 figure
    corecore