187 research outputs found

    Book Reviews

    Get PDF
    Although the three lectures contained in this volume are propounded as a trinity, the reader will not find in them that unity which is of the essence of a trinity, as distinguished from an aggregate of three. The author proposes a triune division of legal science, Past, Present and Future. But the first lecture deals with a particular phase of the past, the second with a remotely related phase of the present, and the last with a quite unrelated phase of the future, so that they have little in common, save the brilliance that sparkles through them all

    Tunable inductive coupler for high fidelity gates between fluxonium qubits

    Full text link
    The fluxonium qubit is a promising candidate for quantum computation due to its long coherence times and large anharmonicity. We present a tunable coupler that realizes strong inductive coupling between two heavy-fluxonium qubits, each with 50\sim50MHz frequencies and 5\sim5 GHz anharmonicities. The coupler enables the qubits to have a large tuning range of XX\textit{XX} coupling strengths (35-35 to 7575 MHz). The ZZ\textit{ZZ} coupling strength is <3<3kHz across the entire coupler bias range, and <100<100Hz at the coupler off-position. These qualities lead to fast, high-fidelity single- and two-qubit gates. By driving at the difference frequency of the two qubits, we realize a iSWAP\sqrt{i\mathrm{SWAP}} gate in 258258ns with fidelity 99.72%99.72\%, and by driving at the sum frequency of the two qubits, we achieve a bSWAP\sqrt{b\mathrm{SWAP}} gate in 102102ns with fidelity 99.91%99.91\%. This latter gate is only 5 qubit Larmor periods in length. We run cross-entropy benchmarking for over 2020 consecutive hours and measure stable gate fidelities, with bSWAP\sqrt{b\mathrm{SWAP}} drift (2σ2 \sigma) <0.02%< 0.02\% and iSWAP\sqrt{i\mathrm{SWAP}} drift <0.08%< 0.08\%.Comment: 16 pages, 14 figure

    Discovery of Potential piRNAs from Next Generation Sequences of the Sexually Mature Porcine Testes

    Get PDF
    Piwi- interacting RNAs (piRNAs), a new class of small RNAs discovered from mammalian testes, are involved in transcriptional silencing of retrotransposons and other genetic elements in germ line cells. In order to identify a full transcriptome set of piRNAs expressed in the sexually mature porcine testes, small RNA fractions were extracted and were subjected to a Solexa deep sequencing. We cloned 6,913,561 clean reads of Sus Scrofa small RNAs (18–30 nt) and performed functional characterization. Sus Scrofa small RNAs showed a bimodal length distribution with two peaks at 21 nt and 29 nt. Then from 938,328 deep-sequenced small RNAs (26–30 nt), 375,195 piRNAs were identified by a k-mer scheme and 326 piRNAs were identified by homology searches. All piRNAs predicted by the k-mer scheme were then mapped to swine genome by Short Oligonucleotide Analysis Package (SOAP), and 81.61% of all uniquely mapping piRNAs (197,673) were located to 1124 defined genomic regions (5.85 Mb). Within these regions, 536 and 501 piRNA clusters generally distributed across only minus or plus genomic strand, 48 piRNA clusters distributed on two strands but in a divergent manner, and 39 piRNA clusters distributed on two strands in an overlapping manner. Furthermore, expression pattern of 7 piRNAs identified by homology searches showed 5 piRNAs displayed a ubiquitous expression pattern, although 2 piRNAs were specifically expressed in the testes. Overall, our results provide new information of porcine piRNAs and their specific expression pattern in porcine testes suggests that piRNAs have a role in regulating spermatogenesis

    PDXNet portal: patient-derived Xenograft model, data, workflow and tool discovery.

    Get PDF
    We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI\u27s Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials

    Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Candida parapsilosis </it>is one of the most common causes of <it>Candida </it>infection worldwide. However, the genome sequence annotation was made without experimental validation and little is known about the transcriptional landscape. The transcriptional response of <it>C. parapsilosis </it>to hypoxic (low oxygen) conditions, such as those encountered in the host, is also relatively unexplored.</p> <p>Results</p> <p>We used next generation sequencing (RNA-seq) to determine the transcriptional profile of <it>C. parapsilosis </it>growing in several conditions including different media, temperatures and oxygen concentrations. We identified 395 novel protein-coding sequences that had not previously been annotated. We removed > 300 unsupported gene models, and corrected approximately 900. We mapped the 5' and 3' UTR for thousands of genes. We also identified 422 introns, including two introns in the 3' UTR of one gene. This is the first report of 3' UTR introns in the Saccharomycotina. Comparing the introns in coding sequences with other species shows that small numbers have been gained and lost throughout evolution. Our analysis also identified a number of novel transcriptional active regions (nTARs). We used both RNA-seq and microarray analysis to determine the transcriptional profile of cells grown in normoxic and hypoxic conditions in rich media, and we showed that there was a high correlation between the approaches. We also generated a knockout of the <it>UPC2 </it>transcriptional regulator, and we found that similar to <it>C. albicans</it>, Upc2 is required for conferring resistance to azole drugs, and for regulation of expression of the ergosterol pathway in hypoxia.</p> <p>Conclusion</p> <p>We provide the first detailed annotation of the <it>C. parapsilosis </it>genome, based on gene predictions and transcriptional analysis. We identified a number of novel ORFs and other transcribed regions, and detected transcripts from approximately 90% of the annotated protein coding genes. We found that the transcription factor Upc2 role has a conserved role as a major regulator of the hypoxic response in <it>C. parapsilosis </it>and <it>C. albicans</it>.</p
    corecore