6,855 research outputs found

    Why is the bulk resistivity of topological insulators so small?

    Full text link
    As-grown topological insulators (TIs) are typically heavily-doped nn-type crystals. Compensation by acceptors is used to move the Fermi level to the middle of the band gap, but even then TIs have a frustratingly small bulk resistivity. We show that this small resistivity is the result of band bending by poorly screened fluctuations in the random Coulomb potential. Using numerical simulations of a completely compensated TI, we find that the bulk resistivity has an activation energy of just 0.15 times the band gap, in good agreement with experimental data. At lower temperatures activated transport crosses over to variable range hopping with a relatively large localization length.Comment: 4+ pages, 3 figures; published versio

    Scaling Relations for Galaxies Prior to Reionization

    Full text link
    The first galaxies in the Universe are the building blocks of all observed galaxies. We present scaling relations for galaxies forming at redshifts z15z \ge 15 when reionization is just beginning. We utilize the ``Rarepeak' cosmological radiation hydrodynamics simulation that captures the complete star formation history in over 3,300 galaxies, starting with massive Population III stars that form in dark matter halos as small as ~106M10^6 M_\odot. We make various correlations between the bulk halo quantities, such as virial, gas, and stellar masses and metallicities and their respective accretion rates, quantifying a variety of properties of the first galaxies up to halo masses of 109M10^9 M_\odot. Galaxy formation is not solely relegated to atomic cooling halos with virial temperatures greater than 10410^4 K, where we find a dichotomy in galaxy properties between halos above and below this critical mass scale. Halos below the atomic cooling limit have a stellar mass -- halo mass relationship logM3.5+1.3log(Mvir/107M)\log M_\star \simeq 3.5 + 1.3\log(M_{\rm vir} / 10^7 M_\odot). We find a non-monotonic relationship between metallicity and halo mass for the smallest galaxies. Their initial star formation events enrich the interstellar medium and subsequent star formation to a median of 102Z10^{-2} Z_\odot and 101.5Z10^{-1.5} Z_\odot, respectively, in halos of total mass 107M10^7 M_\odot that is then diluted by metal-poor inflows, well beyond Population III pre-enrichment levels of 103.5Z10^{-3.5} Z_\odot. The scaling relations presented here can be employed in models of reionization, galaxy formation and chemical evolution in order to consider these galaxies forming prior to reionization.Comment: 10 pages, 10 figures. Accepted to Ap

    Development of a high-speed H-alpha camera system for the observation of rapid fluctuations in solar flares

    Get PDF
    A solid-state digital camera was developed for obtaining H alpha images of solar flares with 0.1 s time resolution. Beginning in the summer of 1988, this system will be operated in conjunction with SMM's hard X-ray burst spectrometer (HXRBS). Important electron time-of-flight effects that are crucial for determining the flare energy release processes should be detectable with these combined H alpha and hard X-ray observations. Charge-injection device (CID) cameras provide 128 x 128 pixel images simultaneously in the H alpha blue wing, line center, and red wing, or other wavelength of interest. The data recording system employs a microprocessor-controlled, electronic interface between each camera and a digital processor board that encodes the data into a serial bitstream for continuous recording by a standard video cassette recorder. Only a small fraction of the data will be permanently archived through utilization of a direct memory access interface onto a VAX-750 computer. In addition to correlations with hard X-ray data, observations from the high speed H alpha camera will also be correlated and optical and microwave data and data from future MAX 1991 campaigns. Whether the recorded optical flashes are simultaneous with X-ray peaks to within 0.1 s, are delayed by tenths of seconds or are even undetectable, the results will have implications on the validity of both thermal and nonthermal models of hard X-ray production

    Coulomb gap triptychs, 2\sqrt{2} effective charge, and hopping transport in periodic arrays of superconductor grains

    Full text link
    In granular superconductors, individual grains can contain bound Cooper pairs while the system as a whole is strongly insulating. In such cases the conductivity is determined by electron hopping between localized states in individual grains. Here we examine a model of hopping conductivity in such an insulating granular superconductor, where disorder is assumed to be provided by random charges embedded in the insulating gaps between grains. We use computer simulations to calculate the single-electron and electron pair density of states at different values of the superconducting gap Δ\Delta, and we identify "triptych" symmetries and scaling relations between them. At a particular critical value of Δ\Delta, one can define an effective charge 2e\sqrt{2}e that characterizes the density of states and the hopping transport. We discuss the implications of our results for magnetoresistance and tunneling experiments.Comment: 11 pages, 7 figure

    Spin-resolved electron waiting times in a quantum dot spin valve

    Get PDF
    We study the electronic waiting time distributions (WTDs) in a non-interacting quantum dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using scattering matrix approach. Since the quantum dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first passage time distributions to quantitatively characterize the spin flip process. The influence degree shows a similar behavior with spin transfer torque and can be a new pathway to characterize spin correlation in spintronics system.Comment: 9 pages, 7 figure

    Theory of hopping conduction in arrays of doped semiconductor nanocrystals

    Full text link
    The resistivity of a dense crystalline array of semiconductor nanocrystals (NCs) depends in a sensitive way on the level of doping as well as on the NC size and spacing. The choice of these parameters determines whether electron conduction through the array will be characterized by activated nearest-neighbor hopping or variable-range hopping (VRH). Thus far, no general theory exists to explain how these different behaviors arise at different doping levels and for different types of NCs. In this paper we examine a simple theoretical model of an array of doped semiconductor NCs that can explain the transition from activated transport to VRH. We show that in sufficiently small NCs, the fluctuations in donor number from one NC to another provide sufficient disorder to produce charging of some NCs, as electrons are driven to vacate higher shells of the quantum confinement energy spectrum. This confinement-driven charging produces a disordered Coulomb landscape throughout the array and leads to VRH at low temperature. We use a simple computer simulation to identify different regimes of conduction in the space of temperature, doping level, and NC diameter. We also discuss the implications of our results for large NCs with external impurity charges and for NCs that are gated electrochemically.Comment: 14 pages, 10 figures; extra schematic figures added; revised introductio

    Is IT Really Becoming a Commodity?

    Get PDF
    Academics and others have claimed that IT is becoming a commodity input, one that can no longer confer a competitive advantage. If IT is becoming a commodity, the role played by IT in most firms should be akin to that played by utilities. We conduct an event-study to determine whether IT is becoming a commodity. We use the volatility of a firm’s stock price to certain macroeconomic news (news about shrinking or expanding demand) to compare the stock price behavior of utility firms with that of IT firms. We find that although the IT industry as a whole is not becoming a commodity, there are some firms within the IT industry that are similar to a utility. In addition, we find that the view that IT can confer a competitive advantage (as perceived by financial markets) was stronger during the dotcom boom period than at other times in the study period (1980-2007)

    Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots

    Full text link
    This paper presents a new teleoperated spherical tensegrity robot capable of performing locomotion on steep inclined surfaces. With a novel control scheme centered around the simultaneous actuation of multiple cables, the robot demonstrates robust climbing on inclined surfaces in hardware experiments and speeds significantly faster than previous spherical tensegrity models. This robot is an improvement over other iterations in the TT-series and the first tensegrity to achieve reliable locomotion on inclined surfaces of up to 24\degree. We analyze locomotion in simulation and hardware under single and multi-cable actuation, and introduce two novel multi-cable actuation policies, suited for steep incline climbing and speed, respectively. We propose compelling justifications for the increased dynamic ability of the robot and motivate development of optimization algorithms able to take advantage of the robot's increased control authority.Comment: 6 pages, 11 figures, IROS 201
    corecore