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We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by
varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering
matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming
and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved
single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated
with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects
the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We
study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel
WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel
WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that
influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations
collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a
pathway to characterize spin correlation in spintronics system.

DOI: 10.1103/PhysRevB.97.165407

I. INTRODUCTION

Spintronics, which utilizes the spin degree of freedom
to process and store information in nanostructured devices,
has received intensive research in the past decades [1–3]. In
spintronics, the magnetic tunnel junction (MTJ) is of partic-
ular interest, which typically consists of two ferromagnetic
leads separated by an insulating layer such as a Fe/MgO/Fe
junction [4–6]. The spin-polarized current varies with the spin
polarization and the relative directions of magnetization in the
magnetic layers. In general, the tunneling current of parallel
configuration of the two magnetic layers is much larger than
that of antiparallel configuration, and this is the so-called tunnel
magnetoresistance (TMR) [6–11]. As predicted independently
by Slonczewski [12] and Berger [13] in 1996, spin current is not
conserved through the MTJ with noncollinear magnetizations
in the magnetic layers, which can induce a spin-transfer
torque (STT) on the magnetization [14–18]. STT has been
applied on spintronic devices such as STT magnetoresistive
random-access memory (STT-MRAM), which employs the
STT instead of the magnetic field to control the magnetization
and hence has lower power consumption [19]. Other investiga-
tions of MTJ include the spin-dependent Seebeck effect in the
thermoelectric engine [20–24], angle-dependent conductance
[25–27], adiabatic pumping [28,29], etc. The quantum-dot
(QD) spin valve is related to MTJ, and has both the TMR
and STT effect as well. If one tunes the QD levels far away
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from the resonant condition, it can mimic the behaviors of MTJ
with an insulating scattering region. Yu et al. has shown that
the off-resonant behaviors of the spin torque of a QD spin valve
are the same as that of MTJ [30].

Current and its fluctuation are typical characterizations of
quantum transport properties in nanodevices [31]. A more
general description beyond current and fluctuation should
resort to the formalism of full-counting statistics (FCS), which
can give a full scenery of probability distribution of transferred
charges and all zero-frequency cumulants at long times [32–
46]. The FCS of charge and STT in an MTJ and QD spin valve
has received intensive attention [29,39,47], and magnetization
switching probability can also be evaluated via FCS [48]. With
the rapid development of single-electron devices [49–51], a
deeper understanding of important information on short-time
physics becomes possible. However, FCS usually deals with
collective behaviors of many electrons at long times and the
short-time particle dynamics is lost. As a complement to FCS,
electronic waiting-time distribution (WTD) has been devel-
oped to characterize the short-time correlation in mesoscopic
conductors, which is the probability density of delay times
between two subsequent charge transfers [52]. WTDs have
been studied for systems governed by either Markovian [53–
60] or non-Markovian [61] master equations. The scattering
matrix formalism [35] has been developed to calculate WTDs
under both constant voltage [62,63] and periodic drive [64–66].
A quantum theory of waiting-time clock has been developed in
order to measure WTDs experimentally [67]. Generalization to
multiple channels [68,69] has been made and the formalism of
joint WTD [69], which characterizes the correlation between
subsequent times, has been established. Spin-averaged WTD
in a QD spin valve has been studied by Sothmann [57].

2469-9950/2018/97(16)/165407(9) 165407-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.165407&domain=pdf&date_stamp=2018-04-05
https://doi.org/10.1103/PhysRevB.97.165407


GAOMIN TANG, FUMING XU, SHUO MI, AND JIAN WANG PHYSICAL REVIEW B 97, 165407 (2018)

Since the spintronic phenomenon plays an indispensable
role in fundamental research and industrial application, inves-
tigation of WTD in the spintronic system is very important.
Study of the spin-resolved WTD of the spintronic system,
which involves at least two channels (spin up and down), is still
lacking and the lacuna should be filled. We note that QD spin
valve or MTJ are earlier examples in the family of spintronics.
In this work, we employ multichannel WTD formalism and
study WTDs and cross-channel WTDs of the QD spin valve
using a scattering matrix approach. The scattering matrix
approach requires the electronic reservoir to have a linear
dispersion with respect to the momentum in the transport
window and the system at zero temperature. We employ the
nonequilibrium Green’s function technique, which does not
rely on weak-coupling strength between QD and electrodes,
to get the scattering amplitude. The behaviors of two channel,
spin-σ and cross-channel, WTDs are numerically calculated
with respect to noncollinear angle and spin polarization,
and their behaviors at initial short times are identified and
explained. The difference between cross-channel WTD and the
corresponding first-passage time distribution (FPTD) reveals
the influence of the first detection on the subsequent one, and
indicates the correlation between spin channels. In order to
characterize the correlation strength between spin channels
quantitatively, we introduce the “influence degree” quantity
as the cumulative absolute difference between cross-channel
WTDs and FPTDs. We find that the influence degree vanishes
for collinear configurations and reaches its maximum near
noncollinear angle θ = π/2 in which STT also achieves its
maximal value. Since spin-correlation strength increases with
increasing spin polarization, influence degree is an increasing
function with respect to the spin polarization.

The paper is organized as follows. In Sec. II, the system
setup and theoretical formalism of two-channel WTD are
introduced. We also present the spin-resolved waiting-time
clock in this section. In Sec. III, we show the numerical results
of WTD by varying the spin polarization and the angle between
the magnetizations of the leads in detail, accompanied by
discussion and analysis. Finally, we summarize our work in
Sec. IV.

II. MODEL AND THEORETICAL FORMALISM

A. Magnetic tunnel junction

The spin valve we consider consists of a QD coupled
to its left and right ferromagnetic leads α = L,R, with the
magnetization of the left lead at a noncollinear angle of θ to
the magnetization of the right lead (Fig. 1). We consider a large
QD so that the Coulomb interaction effect can be neglected.
The system Hamiltonian reads as

H = HS +
∑

α=L,R

(Hα + HαS). (1)

Here, the Hamiltonian of the noninteracting QD is expressed
as

HS =
∑

σ

εσ d†
σ dσ , (2)

where ε↑ and ε↓ can be different for a quantum spin Hall (QSH)
QD [70–72] due to the Zeeman splitting in the presence of a

FIG. 1. Schematic illustration of a spin valve in which a QD
coupled to its left and right ferromagnetic leads α = L,R through
coupling strengths �ασ . The magnetization of the right lead is along
the z axis, while that of the left lead is along the z′ axis at a noncollinear
angle of θ to the z axis. The transmitted electrons with spin σ are
detected in the outgoing channels (right lead) at different positions,
xσ ∈ [vF τ s

σ ,vF τ e
σ ].

magnetic field. And Hα describes the Hamiltonians of the left
and right leads in the local reference frame with the form

Hα =
∑
kσ

εkασ c
†
kασ ckασ , (3)

where εkασ is the energy of an electron with spin σ and
wave number k in the α ferromagnetic lead. The coupling
Hamiltonians between the QD and the left and right leads are
[27]

HLC =
∑

k

c
†
kLtLRd + H.c.,

HRC =
∑

k

c
†
kRtRd + H.c., (4)

respectively, where we used the abbreviations c
†
kα =

(c†kα↑,c
†
kα↓) and d† = (d†

↑,d
†
↓). Here, tα = diag(tα↑,tα↓) is the

hopping matrix elements between the QD and the spin-σ
electronic states in the lead α when θ = 0. The rotation
matrix R from the Bogoliubov transformation is applied to
diagonalize the Hamiltonian of the left lead and has the form
[39]

R =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
. (5)

The coupling strength between the QD and leads in the
collinear configuration is described by �ασ = 2π |tα|2ρασ , and
we set �α = (�α↑ + �α↓)/2. ρασ is the density of states for the
spin σ electrons in the lead α. The spin polarization pα in the
lead α is given by

pα = ρα↑ − ρα↓
ρα↑ + ρα↓

= �α↑ − �α↓
�α↑ + �α↓

. (6)
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pα = 0 indicates that lead α is a normal metal and pα = 1
denotes a half-metallic ferromagnet. Then the coupling
strength can be written as �ασ = �α(1 + σpα)/2, with σ = 1
for spin up and σ = −1 for spin down. In this work, we
assume the system is symmetric and both leads have the same
coupling strength, �L = �R ≡ �, and the same polarization,
pL = pR ≡ p.

The retarded Green’s function of the central QD in spin
space is

Gr (E) = (
E − H0 − R
r

LR† − 
r
R

)−1
, (7)

where H0 = diag(ε↑,ε↓), and the retarded self-energy in the
lead α is 
r

ασ = −i�ασ /2. The transmission matrix from
the left lead to the right lead is T = GrR�LR†Ga�R , with
�α = diag(�α↑,�α↓) and Ga = [Gr ]†. The transmission am-
plitude matrix, which consists of the scattering matrix elements
relating the left and right leads, can be obtained using the
Fisher-Lee relation and expressed as [73–75]

t =
(

t↑↑ t↑↓
t↓↑ t↓↓

)
=

√
�RGrR

√
�L, (8)

with its component tσσ ′ denoting the transmission amplitude
from spin σ ′ in the left lead to spin σ in the right lead. The
explicit energy E dependence of the transmission amplitude
matrix is suppressed for notational simplicity. The QD spin
valve is driven out of equilibrium by applying a constant
voltage bias V . The transport window is [EF ,EF + eV ], with
EF the Fermi level at zero temperature. The spin current in the
left and right leads is, respectively, expressed as

ILσ =
∫ eV

0
[t†t]σσ dE, IRσ =

∫ eV

0
[tt†]σσ dE. (9)

The particle current through the system is expresses as

I =
∫ eV

0
Tr[tt†]dE. (10)

The spin-transfer torque is given by [30]

Ts =
∫ eV

0
Tr

[
Gr

(
i
a

LR̄ − iR̄
r
L

)
Ga�R

]
dE, (11)

with

R̄ =
(− sin θ cos θ

cos θ sin θ

)
. (12)

B. Waiting-time distributions

In this section, we discuss the formalism to calculate waiting
times between successive electrons detected in the right lead.
The system has two incoming and two outgoing channels,
namely, spin up and spin down. If one detects an electron
at a starting time τ s , the conditional probability density of
detecting the successive electron at an ending time τ e is the
two-channel WTD W(τ s,τ e). The detection involved in the
two-channel WTD does not differentiate the electron spin. One
can also define the spin-resolved WTD Wσσ ′(τ s,τ e), which is
the conditional probability density to detect a spinσ ′ electron at
an ending time τ e on the condition that the starting detection
of the spin σ electron occurred at the earlier time τ s . If the
two successively detected electrons possess the same spin,

it is the spin-resolved single-channel WTD, while if the two
successive electrons have different spins, one can define it as
the cross-channel WTD [69]. Since the dc case is considered
here, WTD only depends on the time difference τ = τ e − τ s

due to the time translational symmetry, and one can write
the above-defined WTDs as W(τ ) and Wσσ ′(τ ), respectively.
Before coming back to the discussion of WTDs, we first discuss
the idle-time probability (ITP) which plays the role of the
generating function of WTDs.

We use the scattering matrix approach, which was initially
developed by Hassler et al. [35] and then generalized to
the multichannel case by Dasenbrook et al. [69], to evaluate
the ITPs in noninteracting systems at zero temperature. The
scattering matrix approach requires a linear dispersion rela-
tion with respect to the momentum in the transport window
[EF ,EF + eV ],

E(k) = h̄kvF , (13)

where the energy E(k) is measured with respect to the Fermi
level and vF is the Fermi velocity. We assume that the Fermi
velocities for spin-up and -down electrons are the same and
no spin bias is present in this work. Instead of considering
the probability of no spin-σ electrons detected in the time
intervals [τ s

σ ,τ e
σ ], one can consider the probability of detecting

no electrons in the spatial interval [vF τ s
σ ,vF τ e

σ ] (Fig. 1). We
define the single-particle projection operator

Q̂σ =
∫ vF τ e

σ

vF τ s
σ

b̂†σ (x)b̂σ (x)dx, (14)

which measures the probability of finding a spin-σ electron
in the spatial interval xσ ∈ [vF τ s

σ ,vF τ e
σ ] in the right lead,

where b̂(†)
σ (x) annihilate (create) spin-σ electrons at position

x (Fig. 1). The generalized ITP [69], �(τ s
↑,τ e

↑; τ s
↓,τ e

↓), is the
joint probability that no spin-σ electrons are detected during
the time intervals [τ s

σ ,τ e
σ ]. It can be expressed as the expectation

value of the normal-ordered exponent of −∑
σ Q̂σ ,

�(τ s
↑,τ e

↑; τ s
↓,τ e

↓) = 〈: e− ∑
σ Q̂σ :〉, (15)

with : · : denoting the normal ordering of operators [69]. One
may evaluate the average and obtain the ITP in a determinant
form [69],

�(τ s
↑,τ e

↑; τ s
↓,τ e

↓) = det(I − Q(τ s
σ ,τ e

σ )). (16)

The matrix Q is a 2 × 2 block matrix in the spin space with
the form [69]

Q(τ s
σ ,τ e

σ )(E,E′) = t†(E)K(E − E′)t(E′). (17)

Here, the kernel matrix is diagonal in spin space and reads as
[69]

Kσσ (E) = κ

π
e−iE(τ s

σ +τ e
σ )/2 sin

[
E

(
τ s
σ − τ e

σ

)
/2

]
E

. (18)

In calculating the determinant, given by Eq. (16), we have
divided the transport window into N energy elements, each
with size κ = eV/N . A large N should be taken to ensure the
numerical convergence.

The two-channel ITP �(τ s,τ e), the probability of detecting
no electron regardless of the spin degree in any of the outgoing
channels during a time interval [τ s,τ e], can be obtained from
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the generalized ITP by setting τ e
↑ = τ e

↓ = τ e, τ s
↑ = τ s

↓ = τ s .
The ITP for a single spin-σ channel can be obtained from the
generalized ITP as �σ (τ s

σ ,τ e
σ ) ≡ �(τ s

σ ,τ e
σ ; τ s

σ̄ = τ e
σ̄ ). Here and

below, we use notation σ̄ to denote the spin index which is
different from σ , with σ̄ =↓ for σ =↑, and σ̄ =↑ for σ =↓.

The joint probability density of detecting two successive
electrons both at τ s and τ e is equal to the WTDs multiplied
by the probability density of a detection event at τ s . For
the unidirectional quantum transport considered in this work,
the probability density of a detection at τ s is simply the
electronic current I (τ s) without distinguishing spin or spin
current IRσ (τ s) for a specific spin channel. The joint probability
density can also be obtained by differentiating the ITPs with
respect to both the starting time τ s and the ending time τ e. Then
we can get the equations for two-channel WTD, spin-resolved
single-channel WTD, and cross-channel WTD, respectively,
as [69]

I (τ s)W(τ s,τ e) = −∂τs ∂τ e�(τ s,τ e), (19)

IRσ (τ s)Wσσ (τ s,τ e) = −∂τs ∂τ e�σ (τ s,τ e), (20)

IRσ (τ s)Wσ σ̄ (τ s,τ e) = −∂τs ∂τ e�(τ s
σ ,τ e; τ s,τ e)

∣∣
τ s
σ =τ s . (21)

For the dc transport at zero temperature, the electronic current
is the inverse mean waiting time [62,69], so that we have
I (τ s) = 1/〈τ 〉 and IRσ (τ s) = 1/〈τσ 〉, where 〈τ 〉 is the average
two-channel waiting time and 〈τσ 〉 is the average spin-resolved
single-channel waiting time. Since the dc quantum transport
possesses the time translational symmetry, WTDs and ITPs
only depend on the time difference τ = τ e − τ s , and one can
write the above expressions of WTD as [69]

W(τ ) = 〈τ 〉∂
2�(τ )

∂τ 2
, (22)

Wσσ (τ ) = 〈τσ 〉∂
2�σ (τ )

∂τ 2
, (23)

Wσ σ̄ (τ ) = 〈τσ 〉∂
2�

(
τ s
σ ,τ e; τ s,τ e

)
∂τ s

σ ∂τ e

∣∣∣∣
τ s
σ =τ s ; τ e−τ s=τ

. (24)

The formalism presented is used to calculate WTDs for the
noninteracting systems at zero temperature and assumes a
linear dispersion relation with respect to the momentum in
the electronic reservoir. It assumes neither Markovian approx-
imation nor any renewal properties.

The first-passage time distribution (FPTD) Fσ (τ s
σ ,τ ′) is the

probability density for the event to occur at a time τ ′, in spite
of the observation result of the previous time τ s

σ [52,69,76].
One can relate the FPTD of the spin-σ channel with the
corresponding ITP through the relation

1 −
∫ τ e

σ

τ s
σ

Fσ (τ s
σ ,τ ′)dτ ′ = �σ

(
τ s
σ ,τ e

σ ; τ s
σ̄ = τ e

σ̄

)
. (25)

The time integral in the above equation represents the probabil-
ity to detect spin-σ electrons during the time interval [τ s

σ ,τ e
σ ].

For dc quantum transport, the FPTD is expressed as [76]

Fσ (τ ) = −∂τ�σ (τ ). (26)

FIG. 2. Schematic plot of spin-resolved waiting-time clock. A
quantum spin Hall QD is embedded between two ferromagnetic
electrodes. Spin-σ (spin-up in the plot) electrons can tunnel into the
capacitor through a quantum point contact and then interact with a
two-level system. Spin-σ electron waiting times can be obtained from
monitoring the two-level system by changing interaction strength
λσ (t).

If the outgoing spin-up and -down channels are uncorrelated,
the detection result of a later time in one channel does not
depend on the earlier detection in the other channel, so that the
cross-channel WTD for uncorrelated spin channels is equal to
the FPTD [69],

Wuc
σ σ̄ (τ ) = Fσ̄ (τ ). (27)

In order to measure WTD above the Fermi sea experi-
mentally, a quantum formalism of a detector, which is called
waiting-time clock, has been proposed [67]. The waiting-time
clock consists of a mesoscopic capacitor being coupled to
a quantum two-level system. The electrons from the system
transmit to a chiral edge state in the quantum Hall regime
and then tunnel into the capacitor through a quantum point
contact. The quantum point contact only transmits the electrons
above the Fermi sea. Electrons inside the capacitor interact
with a two-level system of which we monitor the coherent
precession, and then leave the capacitor. The coupling strength
λ(t) between the two-level system and the capacitor is tunable
and time dependent. The moment-generating function could be
obtained from reading the off-diagonal element of the density
matrix of the two-level system for different coupling strengths
λ. Then one can get the ITP from the moment-generating
function, and hence WTD. The chiral edge state is needed
here so that the electron can tunnel into the capacitor through a
quantum point contact. For the system presented in our work,
we consider the QD to be a quantum spin Hall (QSH) quantum
dot [70–72] (see Fig. 2) in order to have edge states in the
QD spin valve. When the the Fermi wavelengths are longer
than the distance between two ferromagnetic electrodes, the
spin-dependent scattering can open a gap to form a dot in a
system such as the double HgTe/CdTe quantum well [77]. One
can also use QSH edges in contact to the QD [78,79] to form
chiral edge states in the central scattering region. When the
Fermi energy of QD is inside the energy gap, electrons only
tunnel through the unidirectional spin-locked edge state, and
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FIG. 3. (a) Two-channel WTD W(τ ), (b) spin-up WTD W↑↑(τ ),
(c) spin-down WTD W↓↓(τ ), and (d) cross-channel WTD W↑↓(τ ) are
plotted by varying noncollinear angle θ with spin polarization p =
0.8. The corresponding FPTD for spin-down F↓(τ ) is plotted with a
dashed line in (d). The waiting time is in units of time, τ̄ = h/(eV ).

one can use one edge to transmit spin-up electrons and the other
edge to transmit spin-down electrons. Then the spin-σ WTD
can be measured by measuring the two-level system with which
the spin-σ electrons interact. The waiting-time clock involving
cross-channel detection is also worth future investigation.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical outcome on the WTDs of the
QD spin valve by varying noncollinear angle θ and spin po-
larization p is reported. We choose the lead coupling strength
� as the energy unit. Voltage bias eV = 3� is applied on the
left lead. In the following calculation, the QD levels are set
within the transport window with ε↑ = 2.0� and ε↓ = 1.5� for
resonant transport, except for Fig. 5, wherein ε↑ = ε↓ = 5.0�

for off-resonant transport. The waiting time τ is in units of the
fundamental time scale τ̄ = h/(eV ), which is the average time
separation of the emitted electrons from the left lead.

In Fig. 3, we plot the two-channel WTD W(τ ) [Fig. 3(a)],
spin-up WTD W↑↑(τ ) [Fig. 3(b)], spin-down WTD W↓↓(τ )
[Fig. 3(c)], and cross-channel WTD W↑↓(τ ) [Fig. 3(d)] by
varying noncollinear angle θ with spin polarization p = 0.8.
The FPTDs for spin-down electrons F↓(τ ) are plotted with
dashed lines in Fig. 3(d). θ = 0 and θ = π corresponds to
parallel and antiparallel configuration, respectively. Differ-
ently from the single-channel case where the Pauli exclusion
principle does not allow two electrons to occupy the same state,
two electrons from different spin channels can be detected
at the same time, so that two-channel WTD is nonzero at

FIG. 4. (a) Charge current, (b) spin-up current IR↑, (c) spin-down
current IR↓, (d) influence degree, and (e) Ts vs noncollinear angle θ

with different spin polarization p. (f) Influence degree vs Ts with the
quadratic fitting If = 0.51(Ts)2 shown as dashed lines.

τ = 0. Two-channel WTD takes its maximal value at τ = τ̄ ,
and this is the same as that of a spinless system [62]. With
a positive polarization, spin-up and -down states are majority
and minority states in the left lead, respectively. The spin-up
current in the right lead has contributions from both the spin-up
and spin-down electrons in the left lead. Increasing θ from
0 to π , the contribution to IR↑ from the spin-up (majority
state) electrons in the left lead decreases, and the contribution
from the spin-down (minority state) electrons increases. The
combined effect leads to a decreasing spin-up current IR↑ in
the right lead with increasing θ . Due to a similar argument,
one can explain that spin-down current IR↓ increases with
increasing θ . The particle current, as the sum of spin-up and
spin-down current, decreases with increasing θ . These current
behaviors with respect to noncollinear angle θ are shown in
Figs. 4(a)–4(c). As can be observed from Figs. 3(a)–3(c),
two-channel WTD W(τ ) and spin-up WTD W↑↑(τ ) decrease
with increasing θ at initial short times which are around before
τ = 5τ̄ , and spin-down WTDW↓↓(τ ) and cross-channel WTD
W↑↓(τ ) increase with increasing θ at initial short times.
Comparing the behaviors between currents and WTDs, one
can observe that both particle current and two-channel WTD
at initial short times decrease with increasing θ , and IRσ and
Wσ ′σ (τ ) at initial short times share the same monotonicity. The
maximum point of W↓↓(τ ) shifts towards shorter times with
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FIG. 5. WTDs for off-resonant transport corresponding to Fig. 3
with ε↑ = ε↓ = 5�.

increasing angle θ from 0 to π and this indicates the increasing
of the tunnel magnitude to the spin-down state in the right lead
as well.

In Fig. 3(d), FPTDs for spin-down F↓(τ ) are plotted using
dashed lines in comparison with the corresponding cross-
channel WTD W↑↓(τ ). We can observe that FPTD and WTD
coincide with each other for the collinear configurations with
θ = 0 and θ = π since the two spin channels are uncorrelated.
Once the spin valve is in the noncollinear setup, cross-channel
WTD deviates from its corresponding FPTD and this indicates
the occurrence of spin torque transfer during transport. Cross-
channel WTDs are less than FPTDs at initially short times and
this indicates the suppression of subsequent detection due to
the correlation between two spin channels and Pauli exclusion
principle. One can observe that FPTD is a monotonically
decreasing function with respect to the time, while cross-
channel WTD may not have this property.

In order to better demonstrate the influence of the first de-
tection on the subsequent detection result from the perspective
of cross-channel WTD, the influence degree quantity is defined
as the cumulative absolute difference between cross-channel
WTDs and FPTDs with the expression

If =
∑

σ

∫ ∞

0
|Wσ̄ σ (τ ) − Fσ (τ )|dτ. (28)

We plot the influence degree versus θ by varying spin polar-
ization p in Fig. 4(d), and the influence degree versus spin
polarization p by varying θ in Fig. 7(d). One can see that the
influence degree vanishes for linear configurations with θ = 0

FIG. 6. (a) Two-channel WTD W(τ ), (b) spin-up WTD W↑↑(τ ),
(c) spin-down WTD W↓↓(τ ), and (d) cross-channel WTD W↑↓(τ )
are plotted by varying spin polarization p with θ = π/2. The corre-
sponding FPTD for spin-down F↓(τ ) is plotted with a dashed line in
(d).

and θ = π , and reaches its maximum near angle θ = π/2 in
which STT also achieves its maximal value [14–16].

If one tunes the QD levels far away from the resonant
condition, it can mimic the behaviors of MTJ with an in-
sulating scattering region. WTDs for off-resonant transport
corresponding to Fig. 3 with ε↑ = ε↓ = 5� are plotted in Fig. 5.
One can see that there are small oscillations with period τ̄ for
all the WTDs shown in Fig. 5 at initial short times due to
the small transmission amplitude in the off-resonant condition
[62]. The behaviors of WTDs at short times are with respect
to noncollinear angle θ .

In Fig. 6, we plot the WTDs by varying spin polarization p

with noncollinear angle θ = π/2 for the resonant transport.
The corresponding FPTDs F↓(τ ) are plotted with dashed
lines in Fig. 6(d). Increasing the polarization reduces both
the particle current and spin-down electronic current so that
two-channel WTDW(τ ), spin-down WTDW↓↓(τ ), and cross-
channel WTD W↑↓(τ ) decrease at initial short times with
increasing p. As indicated in Fig. 7(b), the spin-up current
is not monotonic with respect to polarization p at θ = 0.5π ,
as is the short-time behavior of spin-up WTD W↑↑(τ ). The
short-time behavior of Wσ ′σ (τ ) is the same as spin-σ current
IRσ by changing polarization p and can be seen by comparing
Figs. 6 and 7. With p → 1, both leads become a half-metallic
ferromagnet with only spin-up channel, W(τ = 0) → 0, due
to the Pauli exclusion principle. When both leads are normal
metal, i.e., p = 0, spin-up and -down channels are uncorrelated
and there is no spin-flip process through the junction, and, as
can be seen from Fig. 6(d), cross-channel WTD W↑↓(τ ) coin-
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FIG. 7. (a) Charge current, (b) spin-up current IR↑, (c) spin-down
current IR↓, (d) influence degree, and (e) Ts vs spin polarization p

with different noncollinear angles θ . (f) Influence degree vs Ts with
the quadratic fitting If = 0.51(Ts)2 shown as dashed lines.

cides with FPTDF↓(τ ). One can observe from Fig. 7(d) that the
influence degree is zero for p = 0, and this is independent of
angle θ . Influence degree is an increment function with respect
to the spin polarization regardless of noncollinear angle, as can
be seen from Figs. 4(d) and 7(d). Cross-channel WTDs are less
than FPTDs at initially short times by varying polarization, and
this is also due to spin-channel correlation.

We plot the corresponding spin-transfer torque (STT) versus
noncollinear angle θ with different spin polarization p in
Fig. 4(e), and versus spin polarization with different non-
collinear angle θ in Fig. 7(e). In order to show that spin-
resolved waiting times can directly reflect STT, we show a one-
to-one correspondence between STT and the influence degree
quantity (If ) in Figs. 4(f) and 7(f). The noncollinear angle θ

takes the value in the range [0,π/2] in Fig. 4(f). We can see
that by varying noncollinear angle θ and polarization p, there is
always a specific value of influence degree (If ) corresponding
to a given STT. We also find that they can be very well fitted by
a quadratic relation If = 0.51(STT)2, plotted as dashed lines

in Figs. 4(f) and 7(f). Finally, from Figs. 4(f) and 7(f), we see
that If versus STT for different noncollinear angles as well
as different polarizations collapse into a single curve showing
universal behaviors. This demonstrates that the behaviors of
spin-resolved waiting times and STT are closely related.

IV. CONCLUSION

In this work, we employ the scattering matrix approach to
study the WTDs in a QD spin valve at zero temperature. The
WTDs and FPTDs are calculated by taking derivatives with
respect to the ITP which is a determinant involving both the
spin and energy space. The behaviors of two-channel WTD,
spin-up WTD, spin-down WTD, and cross-channel WTD are
numerically shown with respect to noncollinear angle and spin
polarization. Two-channel WTD takes its maximal value at
τ = τ̄ and is nonzero at τ = 0, which is due to the possibility
of detecting two electrons from different spin channels at the
same time. The short-time behaviors of two-channel WTD and
Wσ ′σ (τ ) are the same as particle current and spin-σ current
IRσ , respectively. We observe that FPTD and WTD coincide
with each other for the collinear configurations, wherein the
spin channels are uncorrelated. When the spin valve is in
the noncollinear setup, the deviation of cross-channel WTD
from its corresponding FPTD indicates the occurrence of spin
torque transfer across the junction. Cross-channel WTD is
less than the corresponding FPTD at initially short times
and this indicates the suppression of subsequent detection
due to the correlation between the two spin channels. We
introduce the “influence degree” quantity to quantitatively
characterize the correlation strength of the spin channels. We
find that the influence degree vanishes for linear configura-
tions and reaches its maximum near angle θ = π/2 in which
STT also achieves its maximal value. Since spin-correlation
strength increases with increasing spin polarization, influence
degree is an increment function with respect to the spin
polarization. We have shown that the influence degree quantity
is nonvanishing for the systems with a spin-flip process.
We further observe that influence degree versus spin-transfer
torque for different noncollinear angles as well as different
polarizations collapses into to a single curve showing universal
behaviors. This work enables us to see that cross-channel WTD
can be a pathway to characterize properties in spintronics
and motivates us to study waiting-time distribution in other
spintronics systems in the future.
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