209,114 research outputs found

    Diagnostics of macroscopic quantum states of Bose-Einstein condensate in double-well potential by nonstationary Josephson effect

    Get PDF
    We propose a method of diagnostic of a degenerate ground state of Bose condensate in a double well potential. The method is based on the study of the one-particle coherent tunneling under switching the time-dependent weak Josephson coupling between the wells. We obtain a simple expression that allows to determine the phase of the condensate and the total number of the particles in the condensate from the relative number of the particles in two wells Δn=n1n2\Delta n =n_1-n_2 measured before the Josephson coupling is switched on and after it is switched off. The specifics of the application of the method in the cases of the external and the internal Josephson effect are discussed.Comment: 3 page

    Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK1/2 and cell proliferation via Gαq-mediated mechanism

    Get PDF
    Dimerization of G protein-coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin-converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C-terminal residues of vasoactive peptides including apelin-13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co-immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α-subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease. © 2014 The Authors

    Combined Modality Therapies for High-Risk Prostate Cancer: Narrative Review of Current Understanding and New Directions.

    Get PDF
    Despite the many prospective randomized trials that have been available in the past decade regarding the optimization of radiation, hormonal, and surgical therapies for high-risk prostate cancer (PCa), many questions remain. There is currently a lack of level I evidence regarding the relative efficacy of radical prostatectomy (RP) followed by adjuvant radiation compared to radiation therapy (RT) combined with androgen deprivation therapy (ADT) for high-risk PCa. Current retrospective series have also described an improvement in biochemical outcomes and PCa-specific mortality through the use of augmented radiation strategies incorporating brachytherapy. The relative efficacy of modern augmented RT compared to RP is still incompletely understood. We present a narrative review regarding recent advances in understanding regarding comparisons of overall and PCa-specific mortality measures among patients with high-risk PCa treated with either an RP/adjuvant RT or an RT/ADT approach. We give special consideration to recent trends toward the assembly of multi-institutional series targeted at providing high-quality data to minimize the effects of residual confounding. We also provide a narrative review of recent studies examining brachytherapy boost and systemic therapies, as well as an overview of currently planned and ongoing studies that will further elucidate strategies for treatment optimization over the next decade

    Behavior of the collective rotor in wobbling motion

    Full text link
    The behavior of the collective rotor in wobbling motion is investigated within the particle-rotor model for the nucleus 135^{135}Pr by transforming the wave functions from the KK-representation to the RR-representation. After reproducing the experimental energy spectra and wobbling frequencies, the evolution of the wobbling mode in 135^{135}Pr, from transverse at low spins to longitudinal at high spins, is illustrated by the distributions of the total angular momentum in the intrinsic reference frame (azimuthal plot). Finally, the coupling schemes of the angular momenta of the rotor and the high-jj particle for transverse and longitudinal wobbling are obtained from the analysis of the probability distributions of the rotor angular momentum (RR-plots) and their projections onto the three principal axes (KRK_R-plots).Comment: 21 pages, 9 page

    Determination of Frequency and Distribution of Hessian Fly (Diptera: Cecidomyiidae) Biotypes in the Northeastern Soft Wheat Region

    Get PDF
    Fifteen collections of Hessian flies from the northern soft winter wheat region of the United States were used to determine the composition and frequency of biotypes. The wheat cultivars \u27Seneca\u27 (H7Hs), \u27Monon\u27 (H3), \u27Knox 62\u27 (~, H7Hg), and \u27Abe\u27 (Hs) were used as differentials. Biotypes J and L replaced biotype B as the prevalent biotype in Indiana, since wheat cultivars having the Hs and the H6 genes have been grown. Biotype GP, the least virulent of any Hessian fly biotypes, was still present in New York indicating that wheat cuItivars with no genes for resistance are still being grown there. The genetic variability of Hessian fly biotypes that enables them to overcome the resistance in wheat cultivars is discussed

    Higgs Triplets, Decoupling, and Precision Measurements

    Full text link
    Electroweak precision data has been extensively used to constrain models containing physics beyond that of the Standard Model. When the model contains Higgs scalars in representations other than SU(2) singlets or doublets, and hence rho not equal to one at tree level, a correct renormalization scheme requires more inputs than the three needed for the Standard Model. We discuss the connection between the renormalization of models with Higgs triplets and the decoupling properties of the models as the mass scale for the scalar triplet field becomes much larger than the electroweak scale. The requirements of perturbativity of the couplings and agreement with electroweak data place strong restrictions on models with Higgs triplets. Our results have important implications for Little Higgs type models and other models with rho not equal to one at tree level.Comment: 23 page

    Computer Program for the Calculation of Multicomponent Convective Diffusion Deposition Rates from Chemically Frozen Boundary Layer Theory

    Get PDF
    The computer program based on multicomponent chemically frozen boundary layer (CFBL) theory for calculating vapor and/or small particle deposition rates is documented. A specific application to perimter-averaged Na2SO4 deposition rate calculations on a cylindrical collector is demonstrated. The manual includes a typical program input and output for users
    corecore