627 research outputs found
The multiple vehicle balancing problem
This paper deals with the multiple vehicle balancing problem (MVBP). Given a fleet of vehicles of limited capacity, a set of vertices with initial and target inventory levels and a distribution network, the MVBP requires to design a set of routes along with pickup and delivery operations such that inventory is redistributed among the vertices without exceeding capacities, and routing costs are minimized. The MVBP is NP\u2010hard, generalizing several problems in transportation, and arising in bike\u2010sharing systems. Using theoretical properties of the problem, we propose an integer linear programming formulation and introduce strengthening valid inequalities. Lower bounds are computed by column generation embedding an ad\u2010hoc pricing algorithm, while upper bounds are obtained by a memetic algorithm that separate routing from pickup and delivery operations. We combine these bounding routines in both exact and matheuristic algorithms, obtaining proven optimal solutions for MVBP instances with up to 25 stations
Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy
We present the first study of nonlinear optical third harmonic generation in
the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental
excitation in the near-infrared, the THG spectrum reveals a strongly resonant
response for photon energies near 0.7 eV. Polarization analysis reveals this
novel resonance to be only partially accounted for by three-photon excitation
to the optical charge-transfer exciton, and indicates that an even-parity
excitation at 2 eV, with a_1g symmetry, participates in the third harmonic
susceptibility.Comment: Requires RevTeX v4.0beta
Photonic crystals of coated metallic spheres
It is shown that simple face-centered-cubic (fcc) structures of both metallic
and coated metallic spheres are ideal candidates to achieve a tunable complete
photonic bandgap (CPBG) for optical wavelengths using currently available
experimental techniques. For coated microspheres with the coating width to
plasma wavelength ratio and the coating and host
refractive indices and , respectively, between 1 and 1.47, one can
always find a sphere radius such that the relative gap width (gap
width to the midgap frequency ratio) is larger than 5% and, in some cases,
can exceed 9%. Using different coatings and supporting liquids, the width
and midgap frequency of a CPBG can be tuned considerably.Comment: 14 pages, plain latex, 3 ps figures, to appear in Europhys. Lett. For
more info on this subject see
http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm
Spectroscopic survey of the Galaxy with Gaia I. Design and performance of the Radial Velocity Spectrometer
The definition and optimisation studies for the Gaia satellite spectrograph,
the Radial Velocity Spectrometer (RVS), converged in late 2002 with the
adoption of the instrument baseline. This paper reviews the characteristics of
the selected configuration and presents its expected performance. The RVS is a
2.0 by 1.6 degree integral field spectrograph, dispersing the light of all
sources entering its field of view with a resolving power R=11 500 over the
wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan
the sky during the 5 years of the Gaia mission. On average, each source will be
observed 102 times over this period. The RVS will collect the spectra of about
100-150 million stars up to magnitude V~17-18. At the end of the mission, the
RVS will provide radial velocities with precisions of ~2 km/s at V=15 and
\~15-20 km/s at V=17, for a solar metallicity G5 dwarf. The RVS will also
provide rotational velocities, with precisions (at the end of the mission) for
late type stars of sigma_vsini ~5 km/s at V~15 as well as atmospheric
parameters up to V~14-15. The individual abundances of elements such as Silicon
and Magnesium, vital for the understanding of Galactic evolution, will be
obtained up to V~12-13. Finally, the presence of the 862.0 nm Diffuse
Interstellar Band (DIB) in the RVS wavelength range will make it possible to
derive the three dimensional structure of the interstellar reddening.Comment: 17 pages, 9 figures, accepted for publication in MNRAS. Fig. 1,2,4,5,
6 in degraded resolution; available in full resolution at
http://blackwell-synergy.com/links/doi/10.1111/j.1365-2966.2004.08282.x/pd
Analysis of on-sky MOAO performance of CANARY using natural guide stars
The first on-sky results obtained by CANARY, the multi-object adaptive optics (MOAO) demonstrator, are analysed. The data were recorded at the William Herschel Telescope, at the end of September 2010. We describe the command and calibrations algorithms used during the run and present the observing conditions. The processed data are MOAO-loop engaged or disengaged slopes buffers, comprising the synchronised measurements of the four natural guide stars (NGS) wavefront sensors running in parallel, and near infrared (IR) images. We describe the method we use to establish the error budget of CANARY. We are able to evaluate the tomographic and the open loop errors, having median values around 216 nm and 110 nm respectively. In addition, we identify an unexpected residual quasi-static field aberration term of mean value 110 nm. We present the detailed error budget analysed for three sets of data for three different asterisms. We compare the experimental budgets with the numerically simulated ones and demonstrate a good agreement. We find also a good agreement between the computed error budget from the slope buffers and the measured Strehl ratio on the IR images, ranging between 10% and 20% at 1530 nm. These results make us confident in our ability to establish the error budget of future MOAO instruments
Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma
Currently, considerable resurgent interest exists in the concept of
superradiance (SR), i.e., accelerated relaxation of excited dipoles due to
cooperative spontaneous emission, first proposed by Dicke in 1954. Recent
authors have discussed SR in diverse contexts, including cavity quantum
electrodynamics, quantum phase transitions, and plasmonics. At the heart of
these various experiments lies the coherent coupling of constituent particles
to each other via their radiation field that cooperatively governs the dynamics
of the whole system. In the most exciting form of SR, called superfluorescence
(SF), macroscopic coherence spontaneously builds up out of an initially
incoherent ensemble of excited dipoles and then decays abruptly. Here, we
demonstrate the emergence of this photon-mediated, cooperative, many-body state
in a very unlikely system: an ultradense electron-hole plasma in a
semiconductor. We observe intense, delayed pulses, or bursts, of coherent
radiation from highly photo-excited semiconductor quantum wells with a
concomitant sudden decrease in population from total inversion to zero. Unlike
previously reported SF in atomic and molecular systems that occur on nanosecond
time scales, these intense SF bursts have picosecond pulse-widths and are
delayed in time by tens of picoseconds with respect to the excitation pulse.
They appear only at sufficiently high excitation powers and magnetic fields and
sufficiently low temperatures - where various interactions causing decoherence
are suppressed. We present theoretical simulations based on the relaxation and
recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing
magnetic field, which successfully capture the salient features of the
experimental observations.Comment: 21 pages, 4 figure
Polariton propagation in weak confinement quantum wells
Exciton-polariton propagation in a quantum well, under centre-of-mass
quantization, is computed by a variational self-consistent microscopic theory.
The Wannier exciton envelope functions basis set is given by the simple
analytical model of ref. [1], based on pure states of the centre-of-mass wave
vector, free from fitting parameters and "ad hoc" (the so called additional
boundary conditions-ABCs) assumptions. In the present paper, the former
analytical model is implemented in order to reproduce the centre-of-mass
quantization in a large range of quantum well thicknesses (5a_B < L < inf.).
The role of the dynamical transition layer at the well/barrier interfaces is
discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier
exciton eigenstates are computed, and compared with various theoretical models
with different degrees of accuracy. Exciton-polariton transmission spectra in
large quantum wells (L>> a_B) are computed and compared with experimental
results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The
sound agreement between theory and experiment allows to unambiguously assign
the exciton-polariton dips of the transmission spectrum to the pure states of
the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.
Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons
We study theoretically the ultrafast nonlinear optical response of quantum
well excitons in a perpendicular magnetic field. We show that for
magnetoexcitons confined to the lowest Landau levels, the third-order
four-wave-mixing (FWM) polarization is dominated by the exciton-exciton
interaction effects. For repulsive interactions, we identify two regimes in the
time-evolution of the optical polarization characterized by exponential and
{\em power law} decay of the FWM signal. We describe these regimes by deriving
an analytical solution for the memory kernel of the two-exciton wave-function
in strong magnetic field. For strong exciton-exciton interactions, the decay of
the FWM signal is governed by an antibound resonance with an
interaction-dependent decay rate. For weak interactions, the continuum of
exciton-exciton scattering states leads to a long tail of the time-integrated
FWM signal for negative time delays, which is described by the product of a
power law and a logarithmic factor. By combining this analytic solution with
numerical calculations, we study the crossover between the exponential and
non-exponential regimes as a function of magnetic field. For attractive
exciton-exciton interaction, we show that the time-evolution of the FWM signal
is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig
Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization
Coherence in an open quantum system is degraded through its interaction with
a bath. This decoherence can be avoided by restricting the dynamics of the
system to special decoherence-free subspaces. These subspaces are usually
constructed under the assumption of spatially symmetric system-bath coupling.
Here we show that decoherence-free subspaces may appear without spatial
symmetry. Instead, we consider a model of system-bath interactions in which to
first order only multiple-qubit coupling to the bath is present, with
single-qubit system-bath coupling absent. We derive necessary and sufficient
conditions for the appearance of decoherence-free states in this model, and
give a number of examples. In a sequel paper we show how to perform universal
and fault tolerant quantum computation on the decoherence-free subspaces
considered in this paper.Comment: 18 pages, no figures. Major changes. Section on universal fault
tolerant computation removed. This section contained a crucial error. A new
paper [quant-ph/0007013] presents the correct analysi
- …