9 research outputs found

    Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis

    Get PDF
    Objectives: To investigate the additional value of transmural perfusion ratio (TPR) in dynamic CT myocardial perfusion imaging for detection of haemodynamically significant coronary artery disease compared with fractional flow reserve (FFR). Methods: Subjects with suspected or known coronary artery disease were prospectively included and underwent a CT-MPI examination. From the CT-MPI time-point data absolute myocardial blood flow (MBF) values were temporally resolved using a hybrid deconvolution model. An absolute MBF value was measured in the suspected perfusion defect. TPR was defined as the ratio between the subendocardial and subepicardial MBF. TPR and MBF results were compared with invasive FFR using a threshold of 0.80. Results: Forty-three patients and 94 territories were analysed. The area under the receiver operator curve was larger for MBF (0.78) compared with TPR (0.65, P = 0.026). No significant differences were found in diagnostic classification between MBF and TPR with a territory-based accuracy of 77 % (67-86 %) for MBF compared with 70 % (60-81 %) for TPR. Combined MBF and TPR classification did not improve the diagnostic classification. Conclusions: Dynamic CT-MPI-based transmural perfusion ratio predicts haemodynamically significant coronary artery disease. However, diagnostic performance of dynamic CT-MPI-derived TPR is inferior to quantified MBF and has limited incremental value. Key Points: • The transmural perfusion ratio from dynamic CT-MPI predicts functional obstructive coronary artery disease• Performance of the transmural perfusion ratio is inferior to quantified myocardial blood flow• The incremental value of the transmural perfusion ratio is limite

    Validation of 4D flow CMR against simultaneous invasive hemodynamic measurements: a swine study

    Get PDF
    The purpose of this study was to compare invasively measured aorta fow with 2D phase contrast fow and 4D fow measurements by cardiovascular magnetic resonance (CMR) imaging in a large animal model. Nine swine (mean weight 63±4 kg) were included in the study. 4D fow CMR exams were performed on a 1.5T MRI scanner. Flow measurements were performed on 4D fow images at the aortic valve level, in the ascending aorta, and main pulmonary artery. Simultaneously, fow was measured using an invasive fow probe, placed around the ascending aorta. Additionally, standard 2D phase contrast fow and 2D left ventricular (LV) volumetric data were used for comparison. The correlations of cardiac output (CO) between the invasive fow probe, and CMR modalities were strong to very strong. CO measured by 4D fow CMR correlated better with the CO measured by the invasive fow probe than 2D fow CMR fow and volumetric LV data (4D fow CMR: Spearman’s rho = 0.86 at the aortic valve level and 0.90 at the ascending aorta level; 2D fow CMR: 0.67 at aortic valve level; LV measurements: 0.77). In addition, there tended to be a correlation between mean pulmonary artery fow and aorta fow with 4D fow (Spearman’s rho=0.65, P=0.07), which was absent in measurements obtained with 2D fow CMR (Spearman’s rho=0.40, P=0.33). This study shows that aorta fow can be accurately measured by 4D fow CMR compared to simultaneously measured invasive fow. This helps to further validate the quantitative reliability of this technique

    Transthoracic 3D echocardiographic left heart chamber quantification in patients with bicuspid aortic valve disease

    Get PDF
    Integration of volumetric heart chamber quantification by 3D echocardiography into clinical practice has been hampered by several factors which a new fully automated algorithm (Left Heart Model, (LHM)) may help overcome. This study therefore aims to evaluate the feasibility and accuracy of the LHM software in quantifying left atrial and left ventricular volumes and left ventricular ejection fraction in a cohort of patients with a bicuspid aortic valve. Patients with a bicuspid aortic valve were prospectively included. All patients underwent 2D and 3D transthoracic echocardiography and computed tomography. Left atrial and ventricular volumes were obtained using t

    Left ventricular global longitudinal strain in bicupsid aortic valve patients: head-to-head comparison between computed tomography, 4D flow cardiovascular magnetic resonance and speckle-tracking echocardiography

    Get PDF
    Left ventricular global longitudinal strain (LVGLS) analysis is a sensitive measurement of myocardial deformation most often done using speckle-tracking transthoracic echocardiography (TTE). We propose a novel approach to measure LVGLS using feature-tracking software on the magnitude dataset of 4D flow cardiovascular magnetic resonance (CMR) and compare it to dynamic computed tomography (CT) and speckle tracking TTE derived measurements. In this prospective cohort study 59 consecutive adult patients with a bicuspid aortic valve (BAV) were included. The study protocol consisted of TTE, CT, and CMR on the same day. Image analysis was done using dedicated feature-tracking (4D flow CMR and CT) and speckle-tracking (TTE) software, on apical 2-, 3-, and 4-chamber long-axis multiplanar reconstructions (4D flow CMR and CT) or standard apical 2-, 3-, and 4-chamber acquisitions (TTE). CMR and CT GLS analysis was feasible in all patients. Good correlations were observed for GLS measured by CMR (− 21 ± 3%) and CT (− 20 ± 3%) versus TTE (− 20 ± 3%, Pearson’s r: 0.67 and 0.65, p 0.61, p < 0.001). Feature-tracking GLS analysis is feasible using the magnitude images acquired with 4D flow CMR. GLS measurement by CMR correlates well with CT and speckle-tracking 2D TTE. GLS analysis on 4D flow CMR allows for an integrative approach, integrating flow and functional data in a single sequence. Not applicable, observational study

    Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography

    Get PDF
    Over the past 10 years there has been intense research in the development of volumetric visualization of intracardiac flow by cardiac magnetic resonance (CMR). This volumetric time resolved technique called CMR 4D flow imaging has several advantages over standard CMR. It offers anatomical, functional and flow information in a single free-breathing, ten-minute acquisition. However, the data obtained is large and its processing requires dedicated software. We evaluated a cloud-based application package that combines volumetric data correction and visualization of CMR 4D flow data, and assessed its accuracy for the detection and grading of aortic valve regurgitation using transthoracic echocardiography as reference. Between June 2014 and January 2015, patients planned for clinical CMR were consecutively approached to undergo the supplementary CMR 4D flow acquisition. Fifty four patients (median age 39 years, 32 males) were included. Detection and grading of the aortic valve regurgitation using CMR 4D flow imaging were evaluated against transthoracic echocardiography. The agreement between 4D flow CMR and transthoracic echocardiography for grading of aortic valve regurgitation was good (κ = 0.73). To identify relevant, more than mild aortic valve regurgitation, CMR 4D flow imaging had a sensitivity of 100 % and specificity of 98 %. Aortic regurgitation can be well visualized, in a similar manner as transthoracic echocardiography, when using CMR 4D flow imaging

    Evaluation of atrial septal defects with 4D flow MRI—multilevel and inter-reader reproducibility for quantification of shunt severity

    Get PDF
    Purpose: With the hypothesis that 4D flow can be used in evaluation of cardiac shunts, we seek to evaluate the multilevel and interreader reproducibility of measurements of the blood flow, shunt fraction and shunt volume in patients with atrial septum defect (ASD) in practice at multiple clinical sites. Materials and methods: Four-dimensional flow MRI examinations were performed at four institutions across Europe and the US. Twenty-nine patients (mean age, 43 years; 11 male) were included in the study. Flow measurements were performed at

    Partial anomalous pulmonary venous return in Turner syndrome

    No full text
    PURPOSE: The aim of this study is to describe the prevalence, anatomy, associations and clinical impact of partial anomalous pulmonary venous return in patients with Turner syndrome. METHODS AND RESULTS: All Turner patients who presented at our Turner clinic, between January 2007 and October 2015 were included in this study and underwent ECG, echocardiography and advanced imaging such as cardiac magnetic resonance or computed tomography as part of their regular clinical workup. All imaging was re-evaluated and detailed anatomy was described. Partial anomalous pulmonary venous return was diagnosed in 24 (25%) out of 96 Turner patients included and 14 (58%) of these 24 partial anomalous pulmonary venous return had not been reported previously. Right atrial or ventricular dilatation was present in 11 (46%) of 24 partial anomalous pulmonary venous return patients. CONCLUSION: When studied with advanced imaging modalities and looked for with specific attention, PAPVR is found in 1 out of 4 Turner patients. Half of these patients had right atrial and/or ventricular dilatation. Evaluation of pulmonary venous return should be included in the standard protocol in all Turner patients

    Intermodality variation of aortic dimensions: How, where and when to measure the ascending aorta

    No full text
    BACKGROUND: No established reference-standard technique is available for ascending aortic diameter measurements. The aim of this study was to determine agreement between modalities and techniques. METHODS: In patients with aortic pathology transthoracic echocardiography, computed tomography angiography (CTA) and magnetic resonance angiography (MRA) were performed. Aortic diameters were measured at the sinus of Valsalva (SoV), sinotubular junction (STJ) and tubular ascending aorta (TAA) during mid-systole and end-diastole. In echocardiography both the inner edge-to-inner edge (I-I edge) and leading edge-toleading edge (L-L edge) methods were applied, and the length of the aortic annulus to the most cranial visible part of the ascending aorta was measured. In CTA and MRA the I-I method was used. RESULTS: Fifty patients with bicuspid aortic valve (36+/-13years, 26% female) and 50 Turner patients (35+/-13years) were included. Comparison of all aortic measurements showed a mean difference of 5.4+/-2.7mm for the SoV, 5.1+/-2.0mm for the STJ and 4.8+/-2.1mm for the TAA. The maximum difference was 18mm. The best agreement was found between echocardiography L-L edge and CTA during mid-systole. CTA and MRA showed good agreement. A mean difference of 1.5+/-1.3mm and 1.8+/-1.5mm was demonstrated at the level of the STJ and TAA comparing mid-systolic with end-diastolic diameters. The visible length of the aorta increased on average 5.3+/-5.1mmW during mid-systole. CONCLUSIONS: MRA and CTA showed best agreement with L-L edge method by echocardiography. In individual patients large differences in ascending aortic diameter were demonstrated, warranting measurement standardization. The use of CTA or MRA is advised at least once

    Validation of Renal Artery Dimensions Measured by Magnetic Resonance Angiography in Patients Referred for Renal Sympathetic Denervation

    No full text
    Rationale and Objectives: Magnetic resonance angiography (MRA) is a well-established modality for the assessment of renal artery stenosis. Using dedicated quantitative analyses, MRA can become a useful tool for assessing renal artery dimensions in patients referred for renal sympathetic denervation (RDN) and for providing accurate measurements of vascular response after RDN. The purpose of this study was to test the reproducibility of a novel MRA quantitative imaging tool and to validate these measurements against intravascular ultrasound (IVUS). Materials and Methods: In nine patients referred for renal denervation, renal artery dimensions were measured. Bland-Altman analysis was used to assess the intraobserver and interobserver reproducibility. Results: Mean lumen diameter was 5.8 ± 0.7 mm, with a very good intraobserver and interobserver variability of 0.7% (reproducibility: bias, 0 mm; standard deviation [SD], 0.1 mm) and 1.2% (bias, 0 mm; SD, 0.1 mm), respectively. Mean total lumen volume was 1035.3 ± 403.6 mm3 with good intraobserver and interobserver variability of 2.9% (bias, -9.7 mm3; SD, 34.0 mm3) and 2.8% (bias, -11.4 mm3; SD, 42.4 mm3). The correlation (Pearson R) between mean lumen diameter measured with MRA and IVUS was 0.750 (P = .002). Conclusions: Using a novel MRA quantitative imaging tool, renal artery dimensions can be measured with good reproducibility and accuracy. MRA-derived diameters and volumes correlated well with IVUS measurements
    corecore