234 research outputs found
Time dependent wind fields
Two tasks were performed: (1) determination of the accuracy of Seasat scatterometer, altimeter, and scanning multichannel microwave radiometer measurements of wind speed; and (2) application of Seasat altimeter measurements of sea level to study the spatial and temporal variability of geostrophic flow in the Antarctic Circumpolar Current. The results of the first task have identified systematic errors in wind speeds estimated by all three satellite sensors. However, in all cases the errors are correctable and corrected wind speeds agree between the three sensors to better than 1 ms sup -1 in 96-day 2 deg. latitude by 6 deg. longitude averages. The second task has resulted in development of a new technique for using altimeter sea level measurements to study the temporal variability of large scale sea level variations. Application of the technique to the Antarctic Circumpolar Current yielded new information about the ocean circulation in this region of the ocean that is poorly sampled by conventional ship-based measurements
Large-scale sea surface temperature variability from satellite and shipboard measurements
A series of satellite sea surface temperature intercomparison workshops were conducted under NASA sponsorship at the Jet Propulsion Laboratory. Three different satellite data sets were compared with each other, with routinely collected ship data, and with climatology, for the months of November 1979, December 1981, March 1982, and July 1982. The satellite and ship data were differenced against an accepted climatology to produce anomalies, which in turn were spatially and temporally averaged into two-degree latitude-longitude, one-month bins. Monthly statistics on the satellite and ship bin average temperatures yielded rms differences ranging from 0.58 to 1.37 C, and mean differences ranging from -0.48 to 0.72 C, varying substantially from month to month, and sensor to sensor
Satellite refrigeration study. Part II TECHNICAL analysis
Low temperature refrigeration system for satellite mounted infrared sensor coolin
Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years
Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsed and productivity proxy records (total organic carbon [TOC], Si/Ti, and Ca/Ti) from Santa Barbara Basin, California, were generated from a well‐dated Kasten core (SPR0901‐03KC). These records reveal the relationship between Southern California upwelling and oxygenation over the past 2,000 years. Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export productivity proxy) suggest wind curl upwelling influenced Southern California primary productivity, especially during intervals of weak coastal upwelling. Coherence between δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsed by atmospheric circulation, as persistent northerly winds associated with an intensified North Pacific High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsed is used as a water mass tracer of denitrification signals transported north from the eastern tropical North Pacific (ETNP) via the California Undercurrent. A 1,200‐year δ15Nsed record from the Pescadero slope, Gulf of California, lies between denitrifying subsurface waters in the ETNP and Southern California. During the Medieval Climate Anomaly, coherence between Pescadero and Santa Barbara Basin δ15Nsed indicates connections between ETNP and Southern California on centennial timescales. Yet an out‐of‐phase relationship occurred when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest intensified nutrient‐rich subarctic water advection might have transported high‐15N nitrate into Southern California when the California Undercurrent and ETNP denitrification weakened.Key PointsWind curl upwelling contributes to Southern California primary productivity, especially during weak coastal upwelling intervalsIntensified NPH leads to stronger denitrification through enhanced coastal upwelling and reduced rainfallCalifornia receives relatively more tropical water during the Medieval Climate Anomaly and more subarctic water during the Little Ice AgePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/1/palo20779_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/2/palo20779.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/3/palo20779-sup-0001-2019PA003577-SI.pd
Slush hydrogen fluid characterization and instrumentation analysis
Slush hydrogen fluid characterization and instrumentation analysi
Bio-optical footprints created by mesoscale eddies in the Sargasso Sea
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L13608, doi:10.1029/2011GL047660.We investigate the bio-optical footprints made by mesoscale eddies in the Sargasso Sea and the processes that create them through an eddy-centric approach. Many (>10,000) eddies are identified and followed in time using satellite altimetry observations and the spatial ocean color patterns surrounding each eddy are assessed. We find through a sequence of statistical hypothesis tests that not one but several mechanisms (i.e., eddy pumping, eddy advection and eddy-Ekman pumping) are responsible for the spatial-temporal ocean color patterns following individual eddies. Both eddy pumping and the eddy-Ekman pumping mechanisms alter subsurface nutrient distributions thereby driving biogeochemical cycles, while the eddy advection mechanism to first order stirs existing horizontal gradients in bio-optical properties. This work illustrates both the promise and some of the limitations of satellite observations for assessing the biogeochemical impacts of mesoscale eddies.We would like to acknowledge the support
of the National Science Foundation and NASA
Recommended from our members
An Assessment of the Sea Surface Temperature Influence on Surface Wind Stress in Numerical Weather Prediction and Climate Models
The ability of six climate models to capture the observed coupling between SST and surface wind stress in the vicinity of strong midlatitude SST fronts is analyzed. The analysis emphasizes air–sea interactions associated with ocean meanders in the eastward extensions of major western boundary current systems such as the Gulf Stream, Kuroshio, and Agulhas Current. Satellite observations of wind stress from the SeaWinds scatterometer on NASA’s Quick Scatterometer and SST from the Advanced Microwave Scanning Radiometer clearly indicate the influence of SST on surface wind stress on scales smaller than about 30° longitude × 10° latitude. Spatially high-pass-filtered SST and wind stress variations are linearly related, with higher SST associated with higher wind stress. The influence of SST on wind stress is also clearly identifiable in the ECMWF operational forecast model, having a grid resolution of 0.35° × 0.35° (T511). However, the coupling coefficient between wind stress and SST, as indicated by the slope of the linear least squares fit, is only half as strong as for satellite observations.
The ability to simulate realistic air–sea interactions is present to varying degrees in the coupled climate models examined. The Model for Interdisciplinary Research on Climate 3.2 (MIROC3.2) high-resolution version (HIRES) (1.1° × 1.1°, T106) and the NCAR Community Climate System Model 3.0 (1.4° × 1.4°, T85) are the highest-resolution models considered and produce the most realistic air–sea coupling associated with midlatitude current systems. Coupling coefficients between SST and wind stress in MIROC3.2_HIRES and the NCAR model are at least comparable to those in the ECMWF operational model. The spatial scales of midlatitude SST variations and SST-induced wind perturbations in MIROC3.2_HIRES are comparable to those of satellite observations. The spatial scales of SST variability in the NCAR model are larger than those in the ECMWF model and satellite observations, and hence the spatial scales of SST-induced perturbations in the wind fields are larger.
It is found that the ability of climate models to simulate air–sea interactions degrades with decreasing grid resolution. SST anomalies in the GFDL Climate Model 2.0 (CM2.0) (2.0° × 2.5°), Met Office Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) (2.5° × 3.8°), and MIROC3.2 medium-resolution version (MEDRES) (2.8° × 2.8°, T42) have larger spatial scales and are more geographically confined than in the higher-resolution models. The GISS Model E20/Russell (4.0° × 5.0°) is unable to resolve the midlatitude ocean eddies that produce prominent air–sea interaction. Notably, MIROC3.2_MEDRES exhibits much weaker coupling between wind stress and SST than does the higher vertical and horizontal resolution version of the same model. GFDL CM2.0 and Met Office HadCM3 exhibit a linear relationship between SST and wind stress. However, coupling coefficients for the Met Office model are significantly weaker than in the GFDL and higher-resolution models. In addition to model grid resolution (both vertical and horizontal), deficiencies in the parameterization of boundary layer processes may be responsible for some of these differences in air–sea coupling between models and observations
Trophic amplification of climate warming
Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems
Recommended from our members
Scatterometer and Model Wind and Wind Stress in the Oregon–Northern California Coastal Zone
Measurements of surface wind stress by the SeaWinds scatterometer on NASA's Quick Scatterometer (QuikSCAT) satellite are analyzed and compared with several different atmospheric model products, from an operational model and two high-resolution nested regional models, during two summer periods, June through September 2000 and 2001, in the coastal region west of Oregon and northern California. The mean summer wind stress had a southward component over the entire region in both years. Orographic intensifications of both the mean and fluctuating wind stress occurred near Cape Blanco, Cape Mendocino, and Point Arena. Substantial differences between the model products are found for the mean, variable, and diurnal wind stress fields. Temporal correlations with the QuikSCAT observations are highest for the operational model, and are not improved by either nested model. The highest-resolution nested model most accurately reproduced the mean observed stress fields, but slightly degrades the temporal correlations due to incoherent high-frequency (0.5–2 cpd) fluctuations. The QuikSCAT data reveal surprisingly strong diurnal fluctuations that extend offshore 150 km or more with magnitudes that are a significant fraction of the mean wind stress. Wind stress curl fields from QuikSCAT and the models show local cyclonic and anticyclonic maxima associated with the orographic wind intensification around the capes. The present results are consistent with the hypothesis of a wind-driven mechanism for coastal jet separation and cold water plume and anticyclonic eddy formation in the California Current System south of Cape Blanco
Recommended from our members
Randomness, Symmetry, and Scaling of Mesoscale Eddy Life Cycles
It is shown that the life cycles of nonlinear mesoscale eddies, a major component of low-frequency ocean
physical variability, have a characteristic structure that differs fundamentally from that which would be expected
on the basis of classical interpretations of ocean eddy evolution in terms of mean flow instability and equilibration
followed by frictional, radiative, or barotropic decay, or of vortex merger dynamics in quasigeostrophic turbulent
cascades. Further, it is found that these life cycles can be accurately modeled in terms of the large-amplitude
excursions of a stochastic process. These conclusions, which apply in the corresponding global-mean context,
follow from the examination of ensemble-mean and standard deviation time series of normalized eddy amplitude
from an automated eddy identification and tracking analysis of a nearly two decade–merged satellite altimeter
record of global sea surface height (SSH). The resulting series are found to have several striking and unexpected
characteristics, including time-reversal symmetry and approximate self-similarity. Consistent results are obtained
from a similar analysis of a 7-yr record of global SSH from a numerical ocean circulation model. The basic
qualitative and quantitative statistical properties of these series can be remarkably well reproduced with an
extremely simple stochastic model, in which the SSH increments between successive time points are random
numbers, and the eddy life cycles are represented by excursions exceeding a given threshold. The stochastic
model is found also to predict accurately the empirical autocorrelation structure of the underlying observed SSH
field itself, when the autocorrelations are computed along long planetary (Rossby) wave characteristics.Keywords: Nonlinear dynamics, Circulation/Dynamics, Mesoscale processes, Dynamics, Ocean dynamics, Planetary wave
- …